Accelerating Green Hydrogen Economy

Prepared for Green New Energy for a Net Zero India

June 2022

LH2

LH2

We acknowledge contributions from

>> Somesh Kumar Partner & Leader -

Power & Utilities EY India

>> Aaron Cherian

Senior Associate -Power & Utilities EY India >> Mohammad Saif Partner - Power & Utilities EY India

>> Aditya Prakash Senior Associate -Power & Utilities EY India >> Shuboday Ganta Vice President -Power & Utilities EY India

>>> Utkarsh Mathur Associate - Power & Utilities EY India

>>> Vikas Mehta

Executive Director SED Fund >> Kartikeya Singh

Director of Programmes SED Fund

Accelerating Green Hydrogen Economy

Foreword

The impacts of the COVID-19 pandemic and the ongoing conflict in Ukraine are a stark reminder of how India's dependence on energy imports and other commodities linked to global supply chains can threaten its strategic interests. In this context, the emergence of green hydrogen as a promising low carbon feedstock and energy carrier for industrial applications is a boon for India's long-term energy security, sustainability and self-reliance.

Green hydrogen is likely to be at the heart of the global race to achieve economy wide net zero emissions. The competitiveness of green hydrogen derived commodities with traditional fossil fuels will determine the speed and scale of the transition in future.

India's thriving renewable energy markets and enabling policy ecosystem have helped the country retain its position among the top 3 markets globally in the EYs 'Renewable Energy Country Attractiveness Index' (RECAI). By leveraging low-cost intermittent renewable electricity produced at scale, India could become a global hub for production and export of green hydrogen based commodities.

In August 2021, Hon'ble Prime Minister announced the launch of 'National Hydrogen Mission (NHM)' to scale up green hydrogen production, utilization and align India's energy transition efforts with global best practices in technology, policy and regulation. Subsequently, India's leading energy

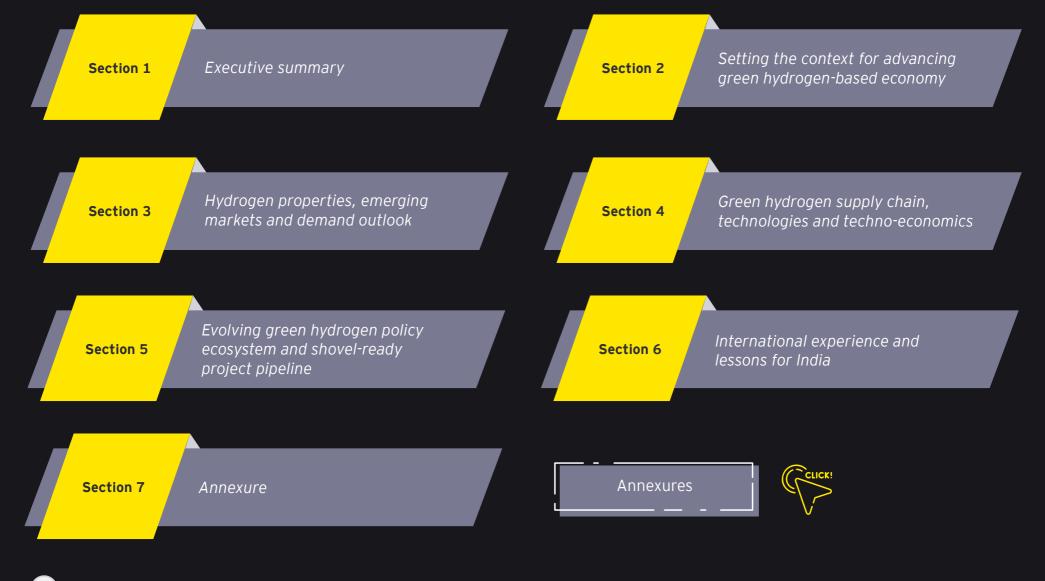
conglomerates both in public and private sectors have announced their ambitions, initiated pilot projects and strategic partnerships to boost the green hydrogen supply chain.

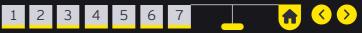
The recently announced 'Green Hydrogen Policy' is a timely intervention for the industry betting on the promise of green hydrogen/ammonia production at competitive prices. The policy will kick start India's energy transition efforts, particularly in the emission intensive industrial sectors such as oil refineries, fertilizers, metals, chemicals, cement, etc.

In this report, EY has contextualized the role of green hydrogen for achieving India's long-term energy security and environmental sustainability objectives. The report presents key insights on demand outlook, applications, emerging technologies, techno-economics of the supply chain (viz. production, storage and transportation/distribution) and evolving policy ecosystem, particularly the role of state governments in driving both demand and competitiveness of green hydrogen. The report also presents a pipeline of 'shovel-ready' investment opportunities at various stages of development.

Mr. Somesh Kumar Partner & Leader (Power & Utility), EY India

Acronyms_


°C	Degree Celsius
AEC	Alkaline Electrolysis Cell
BOO	Build Own Operate
CAGR	Compound Annual Growth Rate
CAPEX	Capital Expenditure
CEA	Central Electricity Authority
CII	Confederation of Indian Industry
CNG	Compressed Natural Gas
CO ₂	Carbon dioxide
CTU/STU	Central/State Transmission Utility
CUF	Capacity Utilization Factor
DAM	Day Ahead Market
DISCOM	Distribution Company
DRI	Direct Reduced Iron
EAF	Electric Arc Furnace
EV	Electric Vehicle
EY	Ernst & Young
FCEV	Fuel Cell Electric Vehicle
g	Grams
GH_{2}	Green Hydrogen
GHG	Green House Gas
GIS	Geographic Information System
GST	Goods and Services Tax


GW	Gigawatt
H ₂	Hydrogen
HEV	Hybrid Electric Vehicles
ICE	Internal Combustion Engine
IEA	International Energy Agency
INR	Indian Rupee
IOCL	Indian Oil Corporation Limited
ISTS	Interstate transmission network
kg	Kilogram
kW	kilowatt
kWh	Kilo Watt Hour
LCOH	Levelized Cost of Hydrogen
T/MTOA	Long Term/Medium Term Open Access
LULC	Land Use - Land Cover
m ³	Cubic meter
MJ	Mega Joule
MNRE	Ministry of New and Renewable Energy
MoP	Ministry of Power
MPa	Mega Pascal
Mt	Million tons
Mtoe	Million tons oil equivalent
MW	Megawatt
NHM	National Hydrogen Mission

Nm3	Newton Meter Cube
NTPC	National Thermal Power Corporation Limited
O&M	Operation and Maintenance
OPEX	Operating Expenditure
PEM	Proton Exchange Membrane
PLI	Production Linked Incentive
PNG	Piped Natural Gas
PPP	Public Private Partnerships
PUS	Public Sector Undertakings
PV	Photovoltaic
R&D	Research and Development
RE	Renewable Energy
REOA	Renewable Energy Open Access
RPO	Renewable Purchase Obligation
RTC	Round-the-clock
SECI	Solar Energy Corporation of India Limited
SEZ	Special economic zone
SLDC	State Load Dispatch Centre
SMR	Steam Methane Reforming
SOEC	Solid Oxide Electrolysis Cell
STOA	Short Term Open Access
USD	United State Dollar

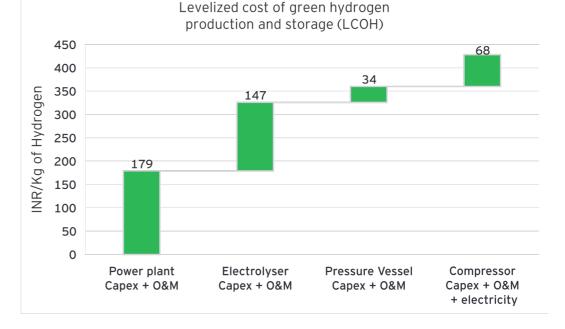
(4

CONTENT

Executive summary

The major consumption of green hydrogen is expected in the form of feed stock in various industrial processes and as an energy carrier. In the year 2018-19, ~5.5 million tons of grey hydrogen was consumed as a feedstock in fertilizer and crude oil refining industries. However, to meet the national and international clean energy transition, the adoption of green hydrogen will play a major role in hard to abate sectors. The industrial sectors that are likely to adopt green hydrogen and drive demand in the long term are:

GH ₂ as Feed stock	GH ₂ as energy carrier
Ammonia production	Transportation
Iron and steel production	Industrial heat
Crude oil refining	Power generation
Methanol production	Blending with natural gas


Hydrogen demand for ammonia production in fertilizer industry would be ~ 4.5 and 7.5 million tons in the years 2030 and 2050, respectively. Similarly, demand for desulphurization in crude oil refining industry would be ~3.2 and 5 Million tons in the years 2030 and 2050, respectively.

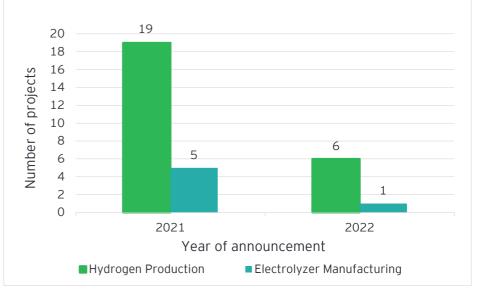
The government has set an ambitious green hydrogen production target of ~5 million tonnes by 2030 under the green hydrogen mission. To achieve this production target, India will need the support of ~115 GW of round-the-clock renewable power generation capacity and ~50 billion liters of fresh water supply. The private sector industries have shown keen interest in green hydrogen market and with the economies of scale the cost of production is believed to reduce.

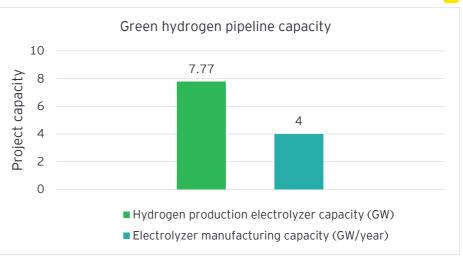
Нус		est by following methe ent scenario	ods
Steam Methane Reforming	Coal Gasification	Biomass Gasification	Alkaline Electrolyzer
1.3 INR/ MJ	2.0 INR/ MJ	2.2 INR/ MJ	3.6 INR/ MJ

Note: Cost of hydrogen is exclusive of storage and transportation

The levelized cost of green hydrogen estimated for a 1MW Alkaline electrolyzer would be approximately INR 430/kg. Amongst this, LCOH ~42% would be contributed for setting up a RTC (round-the-clock) RE power plant, 34% for electrolyzer stack, 16% for compressor and 8% for pressure vessel/storage.

1 2 3 4 5 6 7





Reducing the cost of renewable power generation and supply for GH2 production

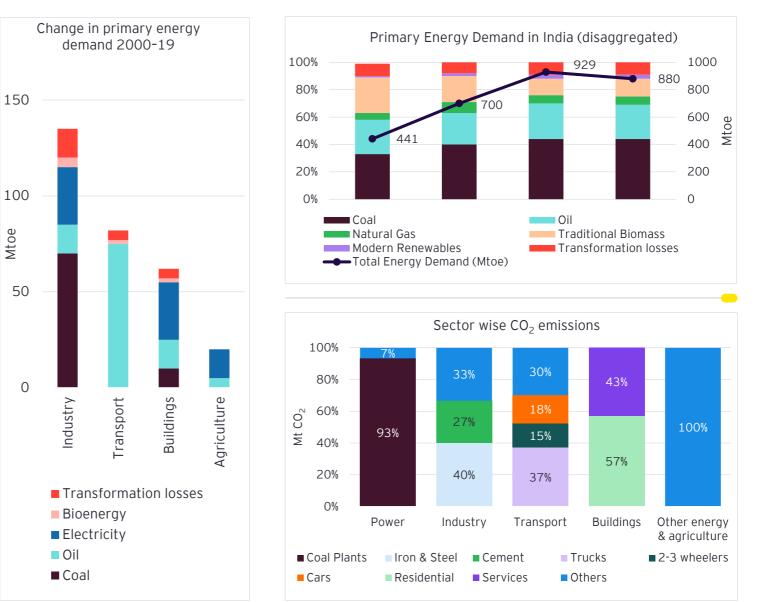
- Waiver of Intra-state transmission charges for GH2 production
- Waivers, clarity and certainty of open access charges for GH2 production
- > Allow banking of surplus energy in the production of GH2
- Fungibility of green hydrogen and renewable purchase obligations
- Improve ease of doing renewable energy open access (REOA) transactions
- GIS mapping and identification of GH2 clusters for development
- 4 Establish state level mission for advancing GH2 economy, formulate and adopt GH2 production targets separately for industries, transportation and other sectors of the economy
- 5 Single window portal for all statutory clearances, permissions required for manufacture, transportation, storage and distribution of green hydrogen / ammonia
- 6 Production linked incentives and fiscal benefits for high efficiency and durable electrolyzer systems
- 7 Enhance public funding support towards R&D programs calling for demonstration of projects that support the competitiveness of GH2 supply chain and end-use

Announced Green Hydrogen projects in pipeline

Source: EY Analysis based on JMK Research

Accelerating Green Hydrogen Economy

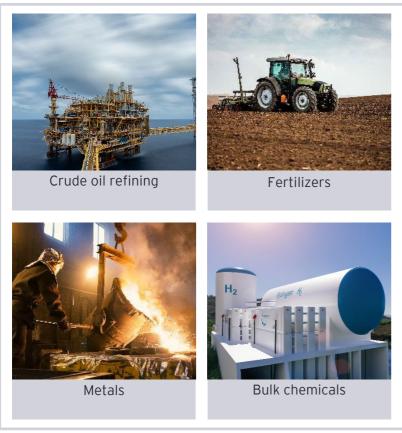
•••••• Setting the context for advancing green hydrogen economy



Long-term energy security, self-reliance and environmental sustainability are the key drivers for advancing green hydrogen (GH2) economy

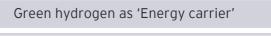
As per the IEA's 'India Energy Outlook 2021', the primary energy mix is currently dominated by coal and oil contributing ~44% and ~25% respectively in 2020. Modern renewables contribute only ~3% of all India primary energy mix in the present scenario. The total primary energy demand has grown at ~4% (CAGR) in the last two decades. The industrial sector witnessed the highest incremental primary energy demand in the last two decades. Coal is the mainstav for industrial energy use. As per the 'India Energy Statistics 2021', net energy import dependency is a whopping 42%. Further, India's CO2 emissions are increasing rapidly from 0.98 billion tons in the year 2000 to ~2.5 billion tons in 2019 as per IEA 2021.

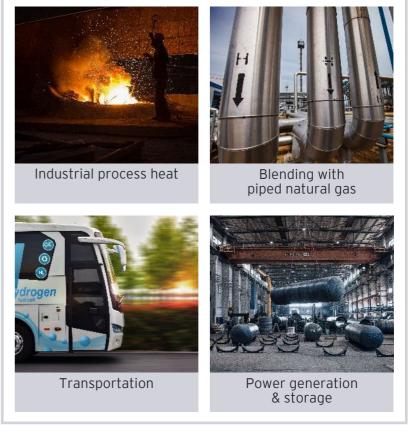
In this context, long-term energy security and environmental sustainability naturally become the key drivers for advancing GH2 economy. Green hydrogen will become one of the principal pathways to decarbonize the industrial and transportation sectors of the economy, which cannot be addressed by direct electrification technologies alone.


*Note that 'Modern Renewables' depicted in the charts above includes all uses of renewable energy (hydro, nuclear, solar, wind, modern biofuels etc.) with the exception of traditional use of solid biomass. Source: IEA, India Energy Outlook, 2021

In a net-zero economy, GH2 will be the dominant feedstock and energy carrier for industrial applications, where direct electrification technologies have limitations

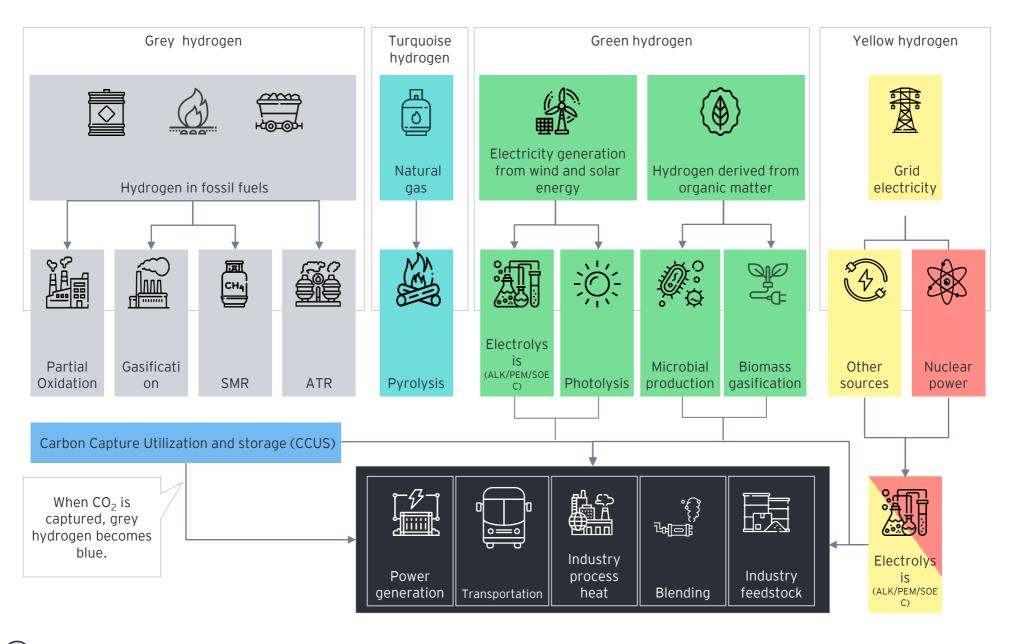
GH2 is a critical piece of energy transition to achieve economy wide net-zero emissions. As industrial feedstock / process gas, GH2 can substitute grey H2 (derived from fossil fuels) used in oil refineries, fertilizer plants, methanol producing chemical plants and treatment of metals. As energy carrier / vector, GH2 can be used for blending with piped natural gas (PNG) used in domestic, commercial and industrial applications, electrification of heavy-duty long-haul transportation such as trucking and maritime shipping through H2 fuel cells, energy storage coupling with renewable rich power systems, etc.


Green hydrogen as 'Feedstock'


Source: EY Analysis

11

Accelerating Green Hydrogen Economy



•••••• Hydrogen properties, emerging markets and demand outlook

(13)

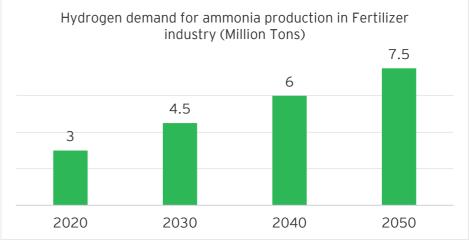
Physical properties of hydrogen warrant additional infrastructure for storage, handling and transportation

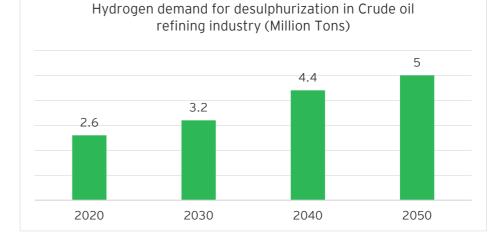
- Hydrogen is the simplest substance (one proton and one electron), non-toxic, colorless, odorless, or tasteless.
- At ambient conditions (temperature and pressure of 20°C and 1 bar respectively), the hydrogen molecule is extremely small and about 14 times lighter than air at 2.016 g/mol and has a high diffusion rate (0.61 cm2/s) and buoyancy.
- The flashpoint of hydrogen is -231°C, which is the lowest compared to other fuels. As the flashpoint indicates easy fuel combustion, the very low flashpoint of hydrogen is advantageous because of the possibility of a simpler system to ignite and combust hydrogen.
- At ambient pressure (1 bar), hydrogen liquifies at a temperature of -253°C, leading to a significant increase in its density.
- When hydrogen burns, the only combustion product is water vapor. Clean hydrogen/air mixtures burn with a non-luminous, almost invisible, pale blue hot flame, liberating the chemically bound energy as heat (gross heat of combustion).
- When comparing all safety related properties for hydrogen and methane in gaseous form, it is assessed that the properties of hydrogen result in a higher risk of explosion. The most important reasons are hydrogen's larger flammability range, which means that a larger part of the gas can be ignited; hydrogen's lower ignition energy (for the high concentrations). This warrants additional infrastructure for safe handling and operations.

Physical properties of <i>H</i> ₂		
Property Unit		Value
Molecular weight g/mol		2.016
Lower heating value (heat of combustion) MJ/kg		120
Boiling point (Liquefaction temperature)	Degree C	- 253
Melting point (Solidification temperature)	Degree C	- 259
Density (@ STP)	Kg/m3	0.084
Density of liquid hydrogen at −253°C	Kg/m3	71
Density of solid hydrogen at −259°C	Kg/m3	858

Source: https://h2tools.org/hyarc ; Aziz, M. Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies 2021, 14, 5917. https://doi.org/10.3390/en14185917 Source: EY Analysis

1 2 3 4 5 6 7


Power and water intake for H ₂ O electrolysis		
Item	Unit	Value
Electrical energy input	kWh/kg of H ₂ production	50 - 55
Power intake (Instantaneou s load)	kW/Nm3 of H ₂ production	4.5
Water intake for H ₂	Litres / m3	0.9
production	Litres / kg	10
Water quality for H ₂ production	µS/cm	< 5


~5.5 million tons of grey hydrogen was consumed in 2018-19 mostly as feedstock for fertilizer and crude oil refining industries

National Hydrogen Mission targets production of five million tonnes of Green hydrogen by 2030: The first leg of green hydrogen policy announcements aim to reduce the cost of green hydrogen production from renewable energy sources and position India a major export hub for green hydrogen and ammonia commodities.

Industrial sector	Hydrogen consumption in 2018-19 (in thousand Metric Tons)	Production method
Crude Oil Refining	2,600.00	
Ammonia production in fertilizer industry	2,850.00	Hydrocarbon reforming
Methanol production	51.67	
Chlor-Alkali Industry	34.37	
Chemical Industry	29.25	Electrolysis
Other industries	9.51	
Total	5,575.00	

Source: Hall, W., Spencer, T., Renjith, G., and Dayal, S. 2020. The Potential Role of Hydrogen in India: A pathway for scaling-up low carbon hydrogen across the economy. TERI

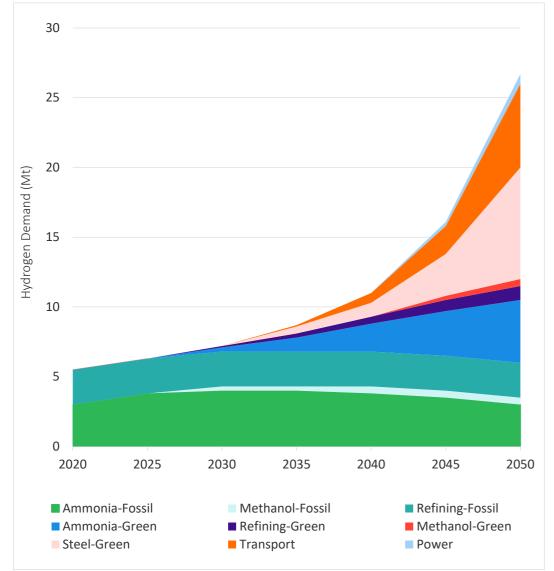
Source: Hall, W., Spencer, T., Renjith, G., and Dayal, S. 2020. The Potential Role of Hydrogen in India: A pathway for scaling-up low carbon hydrogen across the economy. TERI

Source: Compiled by Mr. Vivek Jha, Indo-German Energy Forum 2021

Accelerating Green Hydrogen Economy

15

1 2 3 4 5 6 7

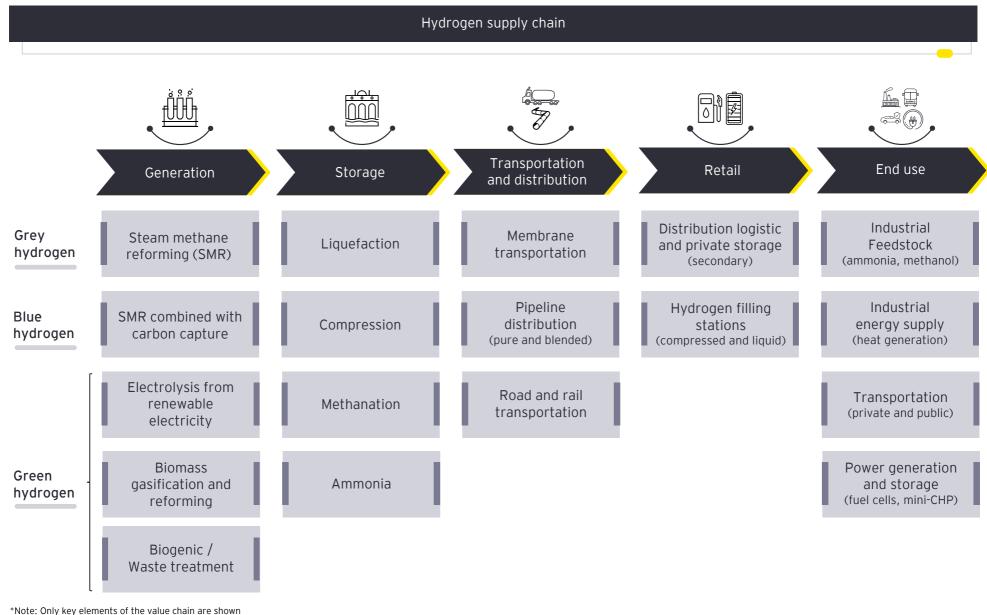

Sreen hydrogen applications, challenges and emerging markets in India

Use case	Challenges and drivers	Emerging market description
Industrial feedstock	Price parity between green and grey hydrogen production will determine the speed and scale of transition; H2 DRI production will result in 0% CDRI increasing the cost of EAF steel production	 Ammonia production in fertilizer industry Desulphurization in crude oil refineries Hydrogen based Direct Reduced Iron (DRI) - Electric Arc Furnace (EAF) steelmaking Methanol production
Process heating	Direct electrification will be competitive wherever feasible; Significant investment in H2 transportation and distribution infrastructure required Hydrogen embrittlement is a major technical challenge for the durability of blending in existing pipelines Technical and regulatory barriers need to be addressed with the adoption of robust standards	 Blending in piped natural gas grids (~15%) Industrial boilers, furnaces and heating applications, domestic cooking and other commercial end uses
Transportation	Significant investment in H2 storage, handling and bunkering / refueling infrastructure required Competition with battery electric vehicles will determine speed and scale of transition	 Long-haul heavy-duty trucking Maritime shipping for freight transportation High speed passenger ferries, boats and cruising for tourism industry
Power generation and energy storage Source: EY Analysis	Significant capital expenditure and low round-trip efficiency (~30-40%) lowers the cost- competitiveness storage applications Batteries are already competitive for short duration storage applications	 Long-duration (>20 hours) energy storage applications for high shares of renewable energy integration in power grids Power generation for peak demand supply

(16)

- Source: Hall, W., Spencer, T., Renjith, G., and Dayal, S. 2020. The Potential Role of Hydrogen in India: A pathway for scaling-up low carbon hydrogen across the economy. TERI
 - Accelerating Green Hydrogen Economy

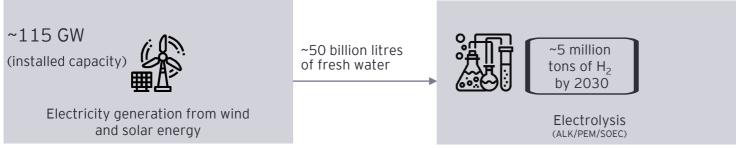
- The following industrial sectors are likely to adopt green hydrogen as feedstock and drive demand in the long term.
 - Ammonia production
 - Iron and steel production
 - Crude oil refining
 - Methanol production
- The demand for green hydrogen as an energy carrier for process heating applications will depend on the economics of appropriate blending concentrations in existing pipelines and creation of dedicated infrastructure in the long term. Any introduction of a hydrogen blend concentration in existing gas grids would require extensive study, testing, and modifications to pipeline integrity monitoring and maintenance practices. Additional cost incurred must be weighed against the benefit of providing a more sustainable and affordable energy carrier to end-users. The benefits of blending, extent of the natural gas pipeline network, impact on end-use systems, safety, material durability and integrity management, leakages and downstream extraction need to be studied thoroughly for before taking decisions.
- Transport sector demand for green hydrogen will be limited to long-haul heavy-duty trucking, maritime shipping and highspeed long-haul passenger ferries, boats and cruising applications. The competitiveness of hydrogen fuel-cell technologies with evolving battery powertrains will be a key determinant of this demand.
- Demand for power generation will be limited to specific long duration renewable energy storage applications



•••••• Green hydrogen supply chain, technologies and techno-economics

Source: EY Analysis

Accelerating Green Hydrogen Economy



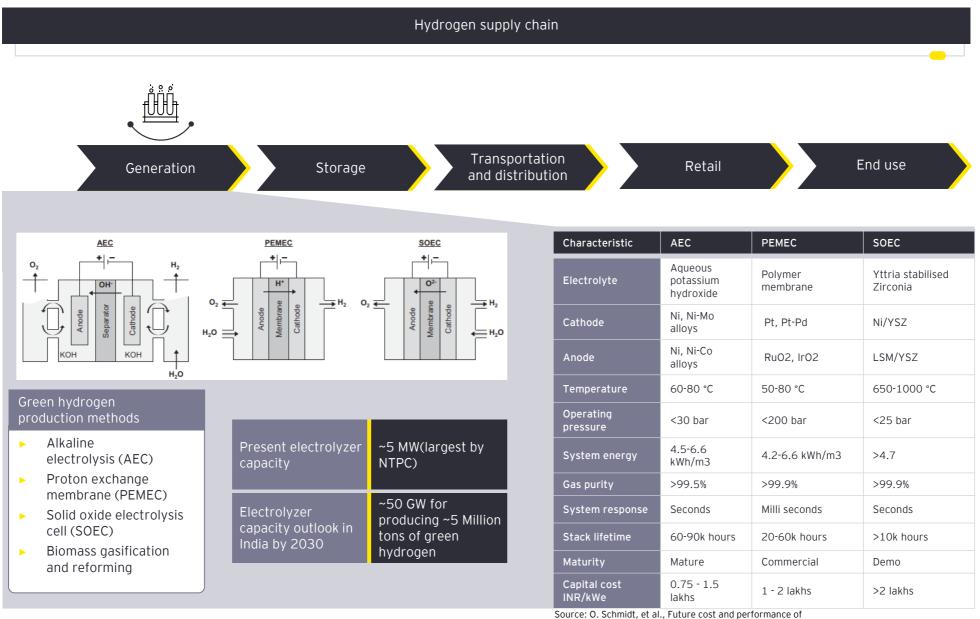
India will need ~115 GW of renewable power generation capacity and ~50 billion liters of fresh water for achieving the production target of ~5 million tons of green hydrogen by 2030

In August 2021, India announced the launch of 'National Hydrogen Mission' to scale up green hydrogen production and align India's energy transition efforts with global best practices in technology, policy and regulation. The Mission aims to support the government's efforts in meeting climate targets and making India a green hydrogen hub. The target for green hydrogen production is ~5 million tonnes by 2030 under this mission. In Feb 2022, the Ministry of Power (MoP), the Government of India notified the 'Green Hydrogen Policy' as the first leg of policy instruments to further bolster efforts in this direction.

Most efficient alkaline electrolyzers today consume ~50 kWh of electricity and 10 liters of fresh water to produce 1 kg of hydrogen. Therefore, if all the ~5 million tons of green hydrogen production target by 2030 were to be achieved via alkaline electrolysis, India would require ~50 billion litres of fresh water and 250 billion kWh of electricity supply from renewable sources of energy, primarily wind and solar PV. This translates to ~115 GW of installed renewable power generation capacity @ 25% CUF (for hybrid round-the -clock supply). To get a sense of this scale, the current all India installed capacity of renewable power generation is ~106 GW as of Feb 2022 (Source: CEA, Installed capacity report, 2022, https://cea.nic.in/wp-content/uploads/installed/2022/02/installed_capacity.pdf).

Source: EY Analysis

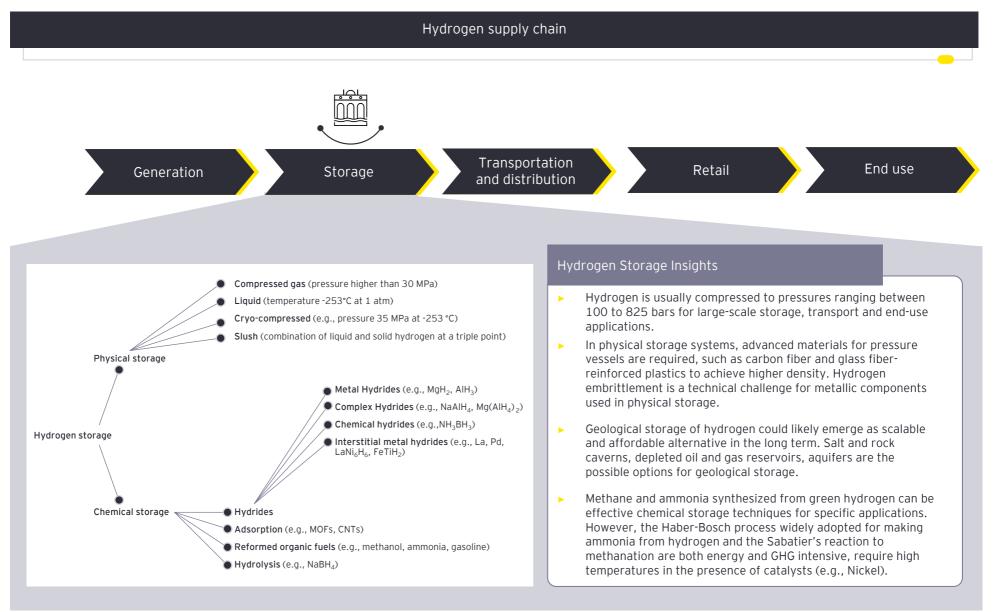
20


India's green hydrogen market is currently in the nascent stages of development. The supply chain for green hydrogen needs sufficient economies of scale and innovation to achieve competitiveness through 2030. More importantly, robust and predictable demand for green hydrogen through 2030 is fundamental for accelerating investments to expand the supply chain. By leveraging low-cost domestic renewable electricity produced at scale, India could become a regional hub for exporting green hydrogen at competitive prices and command a reasonable share in the global hydrogen demand of 200 million tonnes (Source: IEA, Global Hydrogen Review, 2021) by 2030.

The supply chain of GH2 is complex like any other fossil fuel commodity and includes production from renewable energy sources, storage, transportation, distribution, and handling. Beyond this, the physical properties of hydrogen warrants additional infrastructure for safe handling and operations. Many potential end-use applications may need technology and infrastructure to support energy transformations such as H2 to electricity and vice versa, H2 to ammonia, H2 to methanol etc. GH2 production, storage, and supply needs to meet the purity, pressure, and volume requirements of specific industries and applications.

Electrolytic production of green hydrogen: India will need ~50 GW of electrolyzer capacity (installed) to achieve 5 million tons of production target for green hydrogen by 2030

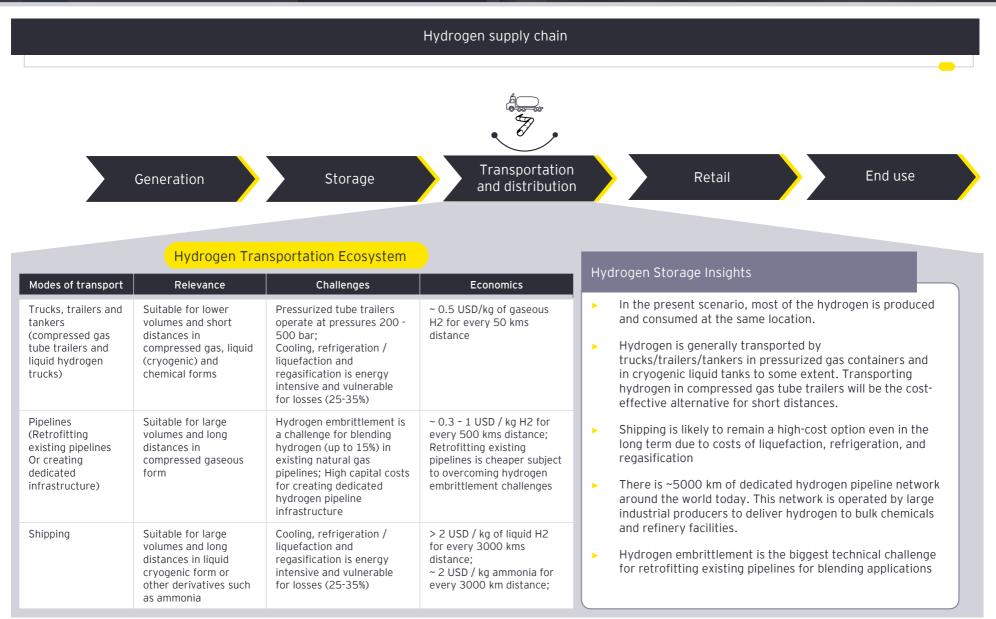
water electrolysis, Hydrogen Energy 2017


Accelerating Green Hydrogen Economy

21

1 2 3 4 5 6 7

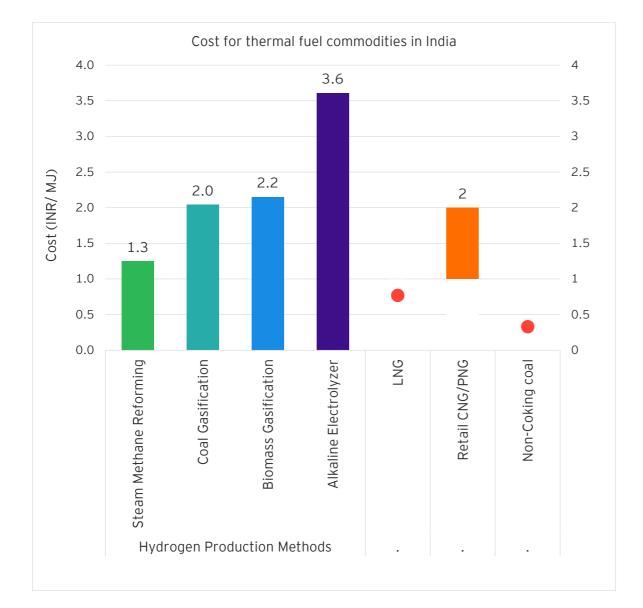
Geological storage of hydrogen could emerge as the scalable and affordable alternative in the long term



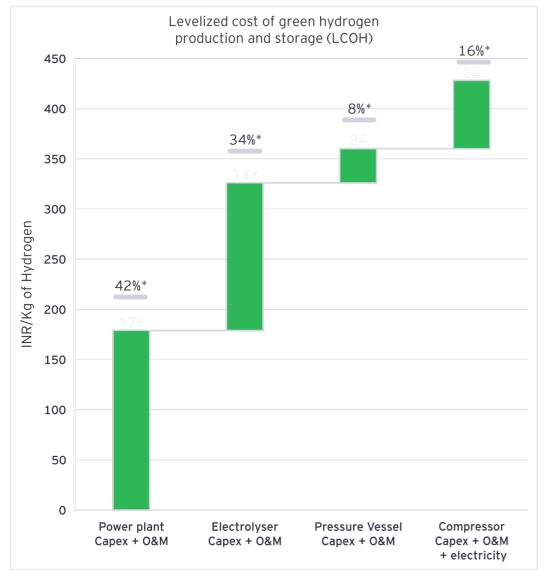
Source: Aziz, M. Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies 2021

22

1 2 3 4 5 6 7



Source: EY Analysis; CEEW, 2020; https://cef.ceew.in/masterclass/analysis/catalysing-green-hydrogen-growth-in-india; TERI 2020


Source: DST 2020; IEA 2021; Indraprastha gas limited; National coal index (December 2021) Note: Cost of hydrogen is exclusive of storage and transportation

Accelerating Green Hydrogen Economy

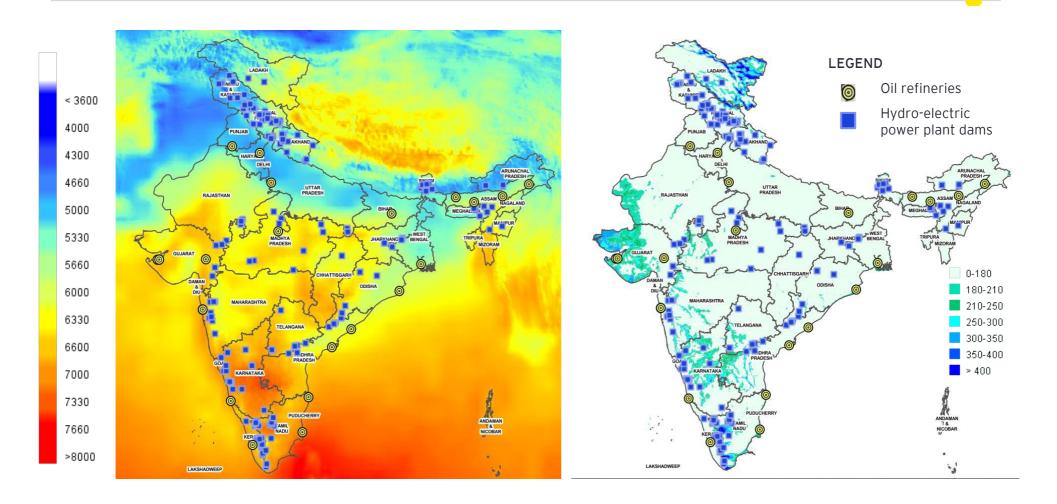
- Grey H2 production costs (steam methane reforming) vary from 75-150 INR/kg depending on the price of natural gas.
- The domestic retail CNG / PNG prices vary from approx. 40-90 INR/kg, which translates to approx. 1-2 INR/MJ of energy considering the lower heating value of this fossil fuel commodity.
- Achieving parity with these commodity prices will determine the speed and scale of GH2 adoption. This requires boosting demand for GH2 in a manner that helps achieve economies of scale across the supply chain, indigenization of supply chain and technology improvement to enhance efficiencies of GH2 production and transformations with earth abundant raw materials. R&D investments and programs are crucial for technology indigenization across the supply chain.
- Government intervention and pilot projects must also address and demonstrate the cost effectiveness of GH2 storage and delivery systems.
- The cost of utility scale intermittent renewable power generation has been declining over the last decade, settling between INR 2-3.0 / kWh in the present scenario. This cost does NOT include transmission, wheeling, banking and other charges specific to local state regulations. Moreover, this declining trend is expected to reverse in the immediate future driven by a global spike in commodity prices, import duties and domestic policy commitments to boost adoption of locally manufactured PV cells, modules, etc.

Source: EY analysis for a small scale 1MW equivalent electrolyzer system *Indicate the % share of overall cost of production and storage

Accelerating Green Hydrogen Economy

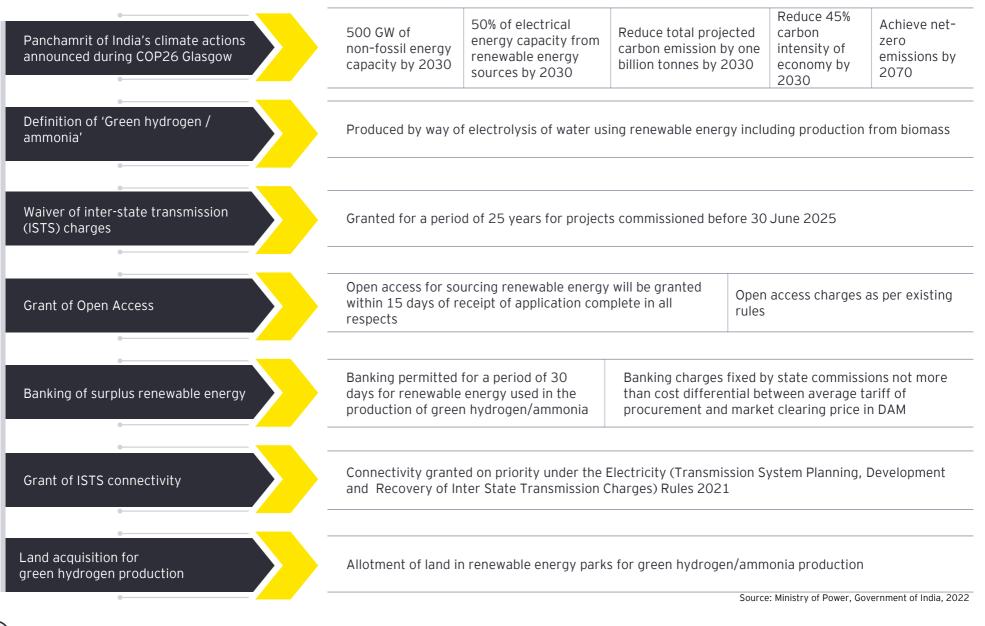
25

There are multiple factors that drive the technoeconomics of the green hydrogen supply chain.


- Renewable energy resource availability and economics of round-the-clock power supply: This includes geographical location and proximity of RE resources, CAPEX and OPEX of round the clock power supply designed for optimum CUF (>70%) w.r.t electrolyzer stack load, interstate / intra-state transmission/wheeling charges, banking and other grid support charges if any. This component typically accounts for 40-50% in the overall LCOH. Round-the -clock systems are typically oversized (2-3 times demand) and therefore results in surplus / excess generation in the range of 10-20%. Mechanisms to buy back or sell curtailed power in open markets can help reduce costs.
- Electrolyzer system efficiency, stack durability and economics: This includes CAPEX and OPEX of electrolyzer stack, water supply, treatment and balance of system. Energy consumption per unit of H2 production (efficiency) at different load factors, stack durability and response for intermittent supply also affect the economics of production operations. This component typically accounts for 30-40% in the overall LCOH.
- Energy efficiency and economics of compression and storage: This includes CAPEX and OPEX for compression system, energy efficiency and consumption, pressure vessel, type of pressure vessel, end-use pressure requirement, days of autonomy for sizing pressure vessel, etc. This component typically accounts for up to 25% of overall LCOH.
- Demand profile of end-use application: This includes the pressure requirement for hydrogen end-use application, hourly and seasonal variations in demand profile and inherent flexibility of end-use application to minimize curtailment.
- Geospatial characteristics of renewable power generation, GH2 production, and end-use: This determines the need for additional storage and transportation / distribution infrastructure.

Cluster-based models of GH2 production close to demand centers can help optimize supply chain costs

Geospatial maps of green hydrogen demand centers (e.g., crude oil refineries) with annual average solar insolation (MJ/m2) and wind power potential (W/m2)



•••••• Evolving the ecosystem of green hydrogen policy and shovel-ready project pipeline

Green hydrogen policy enablers:

Accelerating Green Hydrogen Economy

28

1 2 3 4 5 6 7

Source: Ministry of Power, Government of India, 2022

Green Hydrogen Policy notified in Feb 2022 is a timely intervention for the industry betting on the promise of establishing competitive supply chains

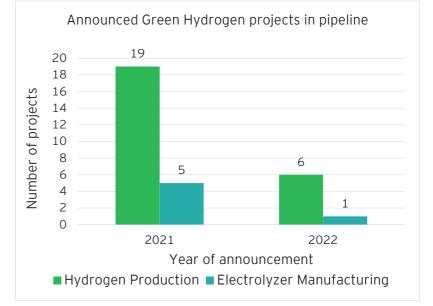
India's 'Green Hydrogen Policy' will kick start energy transition efforts, particularly in the emission intensive industrial sectors.

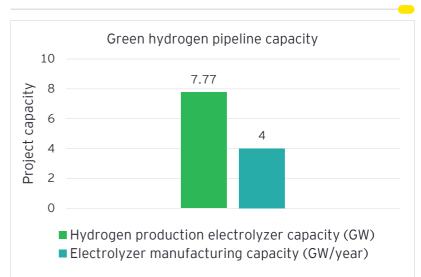
One of the key highlights of this policy, the waiver of inter-state transmission charges for green hydrogen production plants commissioned up to June 2025 sourcing electricity produced from renewable energy sources was already existing from the order dated 23 November 2021. However, this order had provisioned waiver for first 8 years of operations only. The 'Green Hydrogen Policy' has extended the waiver for 25 years of plant operations, which is a welcome step in ensuring long-term cost reduction of green hydrogen production for the industry. One must note that green hydrogen production units must be connected with ISTS network at the point of GH2 production to fully realize the benefits of this waiver. Otherwise, respective state transmission charges may still apply. Therefore, states which extend similar waivers for intra-state transmission could become preferred locations for green hydrogen production units.

The policy also provides 30 days banking facility and limits the applicable banking charges for the renewable energy used in the production of green hydrogen. This is also a significant step, especially when the restrictions on banking provisions for renewable energy are increasing in many states. Banking is permissible only for intra-state transactions and therefore, the industry will benefit from this provision only when the state electricity regulatory commissions amend their banking regulations accordingly. Renewable energy systems designed for green hydrogen production are typically oversized to account for variability. Banking allows green hydrogen producers to supply excess renewable electricity to the grid, with the option of drawing back the same amount of power within a certain period and against the banking charges specified by State Electricity Regulatory Commission. Until recently, many states offered annual banking provisions but have now moved to a monthly banking period, and in some cases have completely withdrawn banking facilities for renewable energy projects. Therefore, the industry will watch closely on how the states which have already restricted banking provisions will adopt the 30 days banking facility, and the formula specified for limiting banking charges specified in the green hydrogen policy.

Similarly, the effectiveness of few other provisions in the green hydrogen policy such as granting open access for renewable energy sourced within 15 days and land allocation in renewable energy parks will depend on the efforts from state governments towards proper adoption and enforcement.

By leveraging low-cost renewable electricity produced at scale, India could become a regional hub for exporting green hydrogen at competitive prices and command a reasonable share in the global hydrogen demand of 200 million tonnes (Source: IEA) by 2030. In this context, India's green hydrogen policy must further evolve to boost demand for green hydrogen, particularly in those markets where grey hydrogen is currently produced and used as feedstock or process gas. Green hydrogen blending with piped natural gas is another major market for boosting demand. The policy must focus on boosting R&D investment with public-private partnerships (PPP) and grand challenges to demonstrate efficient and cost effective GH2 electrolyzers, storage and delivery solutions using earth abundant electrocatalysts and materials. A concrete roadmap towards developing testing facilities and certification mechanisms relying on globally harmonized standards and regulations for Green hydrogen production, storage and delivery is needed. Viability gap funding could focus on projects where green hydrogen could act as alternate energy carrier for enabling low carbon steel, cement, trucking and maritime shipping. The policy must also endeavor towards creating world class talent in the value chain of green hydrogen by way of introducing dedicated academic programs/ degrees and establishment of national research institutes. This is important to kick start the indigenization of technology development and support the industry ambitions towards R&D, product development and services in the entire value chain.





Many leading Indian public sector undertakings (PUS) and private corporations operating in the fossil fuel industry (e.g., oil and gas, thermal power generation) have announced pilot projects, including their long term ambitions and goals in the development of green hydrogen production, storage, transportation and end use ecosystem. In the public sector, IOCL has invited expressions of interest from global players for setting up green hydrogen production units at Mathura and Panipat Refineries with installed capacities of 5,000 Mt per annum and 2,000 Mt per annum respectively on Build Own Operate (BOO) basis. GAIL has launched a global tender to procure 10-megawatt electrolyzer capable of producing 4.5 tonnes of green hydrogen per day. The Solar Energy Corporation of India (SECI) has invited tenders to set up a green hydrogen pilot plant. Most importantly, a 10 per cent purchase obligation for green hydrogen in refineries and fertilizer plants is awaiting Cabinet approval. NTPC is currently exploring a pilot project for standalone hydrogen fuel cell based power-backup solution replacing the diesel power generator. The hydrogen will be produced with an in-house electrolyzer in its Noida and Vishakhapatnam premises. NTPC is also working on a hydrogen fueling station in Leh for green hydrogen mobility. The project shall have two electrolyzer with a daily production capacity of ~80 kg/day power with renewable energy of 6500kWh/day. A pressure vessel to store 100 kg of compressed fuel at 450-500 bar pressure. NTPC will be pushing the hydrogen mobility program with 5 hydrogen fueled buses in the region.

In the private sector space, Reliance Industries, as part of its commitment to invest USD 10 billion (INR 750 billion) in new energy businesses, announced plans to build a giga-factory to manufacture electrolyzers. Adani group has plans to invest \$70 billion in this decade to become the world's largest renewable energy company and produce the cheapest hydrogen on the Earth. These measures and proposed projects would pave the way for a robust green hydrogen market growth in this decade.

EY has identified ~41 shovel-ready projects in the green hydrogen supply chain, out of which 31 are commercial projects and 10 are R&D projects funded by the Department of Science & Technology (Gol). The projects database comprises green hydrogen production, electrolyzer manufacturing, hydrogen retail and R&D projects. These projects are under permitting or announced stage from year 2021 till May 2022. In the year 2022, only 7 projects are announced as compared to ~24 commercial projects in the year 2021. Currently, not all the projects have announced the project capacity, however, project capacity is assessed from the announcements with declared capacity. The green hydrogen production pipeline project plans to install ~7.77 GW electrolyzer plants, while the cumulative electrolyzer manufacturing project capacity stands as ~4 GW/year.

5 6

1 2 3 4

Source: EY Analysis based on JMK Research

The following sections highlight key policy interventions to be adopted by states (sub-national actors) until the green hydrogen supply chain and adoption achieves sufficient economies of scale.

Reducing the cost of renewable power generation and supply for GH2 production

Round-the-clock renewable power generation accounts for 40-50% of the levelized cost of green hydrogen production and storage (LCOH). Sub-national policy frameworks should aim to minimize the cost of this critical supply chain component and significantly improve the ease of doing open access transactions. In this regard, the draft Electricity (promoting renewable energy through Green Energy Open Access) Rules, 2021 notified by Ministry of Power, Government of India in August 2021 is a step in the right direction. However, the responsibility of facilitating open access lies with the State Electricity Regulatory Commission, as per Section 42 and Section 86 of the Electricity Act, 2003. Therefore, the central rules and other state level policy interventions should ultimately manifest as amendments to existing open access regulations at state level for meaningful outcomes.

▶ Waiver of Intra-state transmission charges for GH₂ production

The national green hydrogen policy notified in Feb'22 has announced the waiver of inter-state transmission charges for a period of 25 years for green hydrogen production units commissioned before 30 June 2025. However, green hydrogen production units must be connected with ISTS network at the point of GH_2 production to fully realize the benefits of this waiver. Otherwise, respective intra-state transmission charges may still apply. In this regard, states that extend similar waivers for intra-state transmission charges will enable industry to gain competitive advantage in the production of green hydrogen. Such waivers can extend for limited periods or be limited for first 0.5 - 1 million tons of annual GH_2 production to help achieve economies of scale. Open access regulations could explore mechanisms to socialize the cost of this waiver to reduce fiscal burden.

Waivers, clarity and certainty of open access charges for GH2 production

State governments should extend waivers for levy of open access charges (e.g. banking, cross subsidy, additional surcharge etc.) for the first 0.5 - 1 Million tons of GH₂ production to reduce cost and encourage GH₂ adoption. If not viable, open access charges should be kept at minimum with clarity and certainty of its validity period in the regulations.

- Allow banking of surplus energy in the production of GH2 Existing open access regulations should be amended for allowing banking of at least 10% annual generation for min. 30 days in line with national green hydrogen policy.
- Fungibility of green hydrogen and renewable purchase obligations Open access regulations should specify mechanisms for monitoring, verification, certification and accounting to enable such fungibility of purchase obligations.

2. Improve ease of doing renewable energy open access (REOA) transactions

Rule#6 and 7 in draft Electricity (promoting renewable energy through Green Energy Open Access) Rules, 2021 focus on streamlining, centralizing and standardizing open access approval processes for renewable energy transactions. Given delays in processes and existing complex processes, such an approach is needed. A centralized registry is proposed to enable single window clearance for REOA applications. The applications are to be routed through the state nodal agency, which as per Rule 6 (2) would either be the SLDC for STOA and the CTU/STU for LT/MTOA. As per Rule 7 (2) complete applications are to be uploaded by the nodal agency and in order to prevent delays, applications are deemed approved after 15 days subject to technical requirements specified by the ERC. Further, as per Rule 7 (4) and (5) denial of open access should take place with a written order and the applicant has the right to be heard. Further appeal against orders by the nodal agencies is to be processed by the State Commission. Existing open access regulations should be amended suitably with above provisions.

\gg 3. GIS mapping and identification GH₂ clusters for development

States should undertake GIS mapping of renewable energy resource rich locations, GH₂ demand centers - for example crude oil refineries, fertilizer industries, iron and steel manufacturing units, ports, industrial SEZs and transport corridors (roadways, railways, inland waterways), land use - land cover (LULC) in the vicinity of GH₂ demand centers, water bodies for sourcing fresh water used in the production of electrolysis, etc. GIS mapping along with other geospatial characteristics, potential demand for GH₂ and other relevant attributes should be gathered to rank / prioritize various clusters with respect to their inherent capability of supporting a GH_2 economy, supply chain and consumption.

\gg 4. Establish state level mission for advancing GH₂ economy, formulate and adopt GH₂ production targets separately for industries, transportation and other sectors of the economy

States must establish GH₂ mission with a governance mechanism for interdepartmental coordination, monitoring and evaluation of policy interventions. The governance mechanism should include be represented by energy, industries, and transport departments at the minimum.

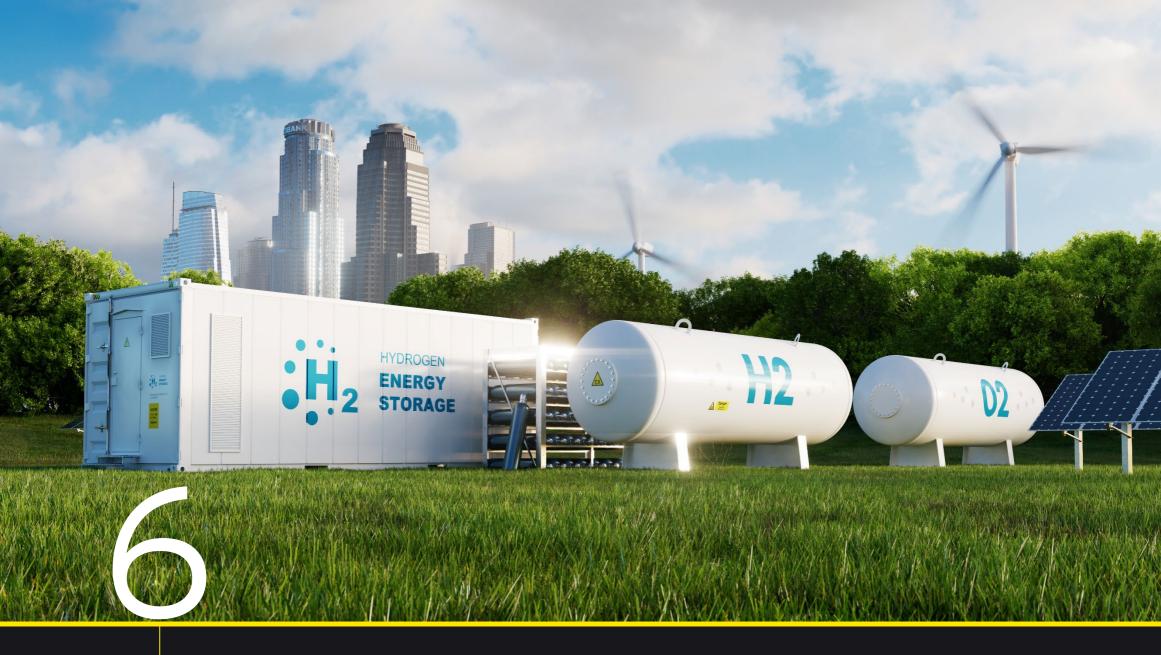
Robust and predictable demand for GH₂ is essential for accelerating investments in the supply chain. In this regard, states must adopt short, medium and long term GH₂ production targets separately for crude oil refineries, fertilizer industries, iron and steel manufacturing units, other industries, transportation sectors etc.

33

5. Single window portal for all statutory clearances, permissions required for manufacture, transportation, storage and distribution of green hydrogen / ammonia

States should establish sing window mechanisms in coordination with central institutions for facilitating all statutory clearances, permissions required for manufacture, transportation, storage and distribution of green hydrogen / ammonia within defined

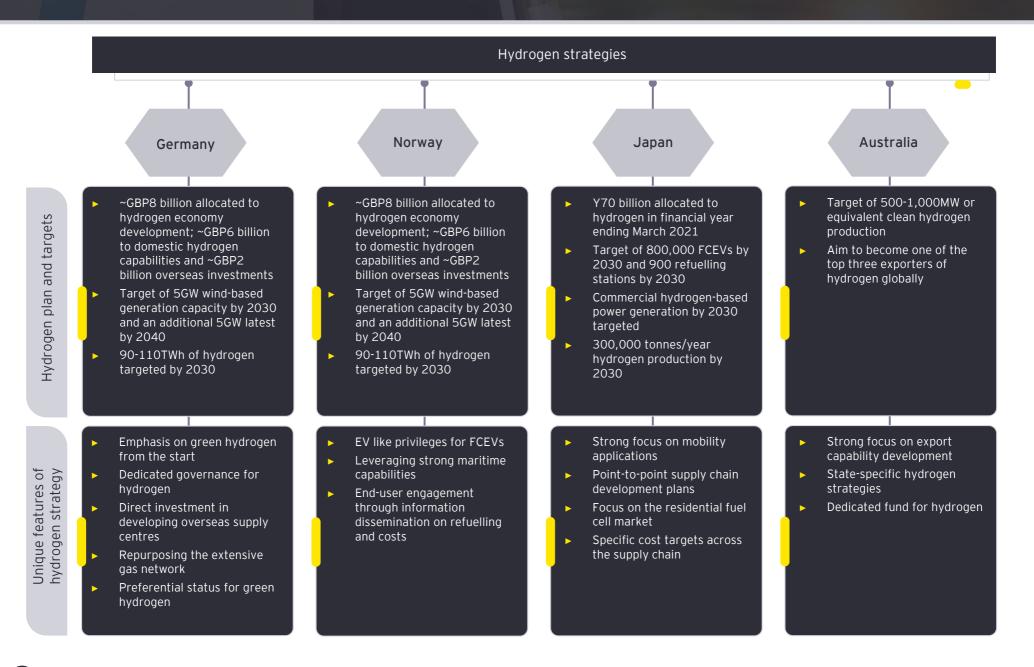
6. Production linked incentives and fiscal benefits for high efficiency and durable electrolyzed systems


Electrolyzed systems account for 30-40% of the levelized cost of green hydrogen production and storage (LCOH). Sub-national policy frameworks should aim to minimize the cost of this critical supply chain component. Therefore, states should offer additional incentives (apart from national PLI scheme if any) linked to production of high efficiency and durable electrolyzed systems. Electrolyzed systems used in the production of GH₂ should be brought in the lowest GST slab or waived off completely.

7. Enhance public funding support towards R&D programs calling for demonstration of projects that support competitiveness of GH₂ supply chain and end-use

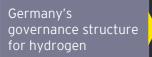
State budgetary resources should be allocated towards creating centers of GH₂ excellence, robust coordination mechanisms to aggregate demand, cutting edge R&D calling for demonstration of following projects:

- > Cost effective high efficiency durable electrolyzers made with earth abundant electrocatalyst materials
- Hydrogen based direct reduced iron (H2-DRI) and electric arc furnace steel projects
- Cost effective Hydrogen fuel cell powered transportation solutions capable of competing with conventional ICE engine and / Or battery electric systems
- Cost effective hydrogen storage materials and solutions made from earth abundant materials



— International experience and lessons for India

Unique levers of hydrogen strategies adopted in developed countries


Germany's Hydrogen Strategy

Germany's Hydrogen Strategy - Key differentiators (1/2)

A well-structured governance comprising three key entities is being established to manage the National Hydrogen Strategy.

Dedicated governance for hydrogen

- Germany is establishing a sound governance structure with clear responsibilities and mandates for involved entities
- A State Secretaries' Committee on Hydrogen, comprising the relevant ministries, will be formed to monitor and develop Germany's National Hydrogen Strategy
- A 26-member National Hydrogen Council will be appointed by the State Secretaries' Committee on Hydrogen, with representation from business, science, and civil society. The council will advise and support the State Secretaries' Committee through proposals and recommendations for action in implementing and enhancing the Hydrogen Strategy.
- A Hydrogen Coordination Office is also being established, which will assist the ministries in implementing the Hydrogen Strategy and the Hydrogen Council in coordinating and drafting recommendations for action.

36

Green hydrogen is central to Germany's hydrogen strategy.

1 2 3 4 5 6 7

Emphasis on green hydrogen from the start

- In its National Hydrogen Strategy, the federal government of Germany lays significant focus on production and use of green hydrogen, compared to other forms (grey and blue)
- The Federal Government considers only hydrogen that has been produced using renewable energy (green hydrogen) to be sustainable in the long term. The role of blue hydrogen is largely transitional.
- A significantly large part of the government's research and technology development is focused on green hydrogen

 \triangleright

Germany's Hydrogen Strategy - Key differentiators (2/2)

Germany will develop overseas sourcing centers to fulfil domestic shortfall of green hydrogen.

Developing international partners

 \triangleright

 \triangleright

- Estimated domestic production of green hydrogen will be inadequate to meet targeted requirements, with insufficient renewable power generation being a major challenge.
- In addition to imports, the German government will develop infrastructure in partner countries for sourcing green hydrogen. Investments are planned for a 100 MW green hydrogen facility in Morocco.
- ~GBP2 billion has been earmarked for developing global supply chains

Existing gas pipelines will act as the foundations for a nation-wide hydrogen grid.

Repurposing the extensive gas network

- A blueprint for the \triangleright world's largest hydrogen grid, covering about 5,900 kilometers, has been announced. The first phase of 1,200 kilometers will be ready by 2030. The existing gas pipeline network will form a large part of the hydrogen grid. Only 100 kilometers
- of the first phase will be built, while the rest will be converted gas pipelines.
- At a cost of ~GBP585 million, the grid will connect the green hydrogen producing regions in the north to the demand centers in the south

°↓ √ ×

Preferential status has been accorded to green hydrogen transmission and distribution.

 \triangleright

Preferential status for green hydrogen

- Green hydrogen falls within the definition of biogas and will enjoy preferential network connection, network access and balancing
- Under Germany's Network Access Regulation, the injection of biogas (and hence hydrogen produced from electrolysis) into the gas transmission grid and distribution network is free of charge

📏 Norway's Hydrogen Strategy

Australia's Hydrogen Strategy - Key differentiators

for FCEVs

38

and other means.

EV privileges for FCEVs

- Almost all financial \triangleright concessions and other rebates available to EVs in Norway are also being provided for FCEVs by the Norwegian government
- FCEVs (until 2025 or \triangleright 50,000 vehicles) are exempt from vehicle registration tax and VAT until 2023. They are also exempt from road traffic insurance tax and registration transfer fee.
- Toll fee has been limited to not more than half of normal rates for FCEVs. A proposal to limit the parking charges is also underway.

Norway's well-developed maritime sector has been identified to adopt and drive the hydrogen market.

Leveraging maritime capabilities

Norway's maritime \triangleright sector will play an integral role in the country's drive towards hydrogen.

Several research and pilot projects are under process to shift domestic maritime operations to hydrogen. A hydrogen-powered ferry will start operating this year onwards.

Norway also has large-scale fuel transport facilities along its coastline. As part of its hydrogen strategy, LNG bunkering, storage and processing competencies will be used for hydrogen trade in the future.

End-users are being enabled to adopt hydrogen by providing them necessary information.

Engaging end-users

Recognizing that market information available to users will drive hydrogen adoption, measures to provide information about available refueling and charging stations for alternative fuels are being developed. A list of infrastructure for alternative fuels for road transport and maritime will be available to the public.

Comparable price data will also be accessible to the public in the future

Australia's Hydrogen Strategy

Australia's Hydrogen Strategy - Key differentiators

Australia plans

its LNG export

successes with

to emulate

hydrogen.

39

Strong export focus

- The Australian hydrogen strategy places significant focus on developing export capabilities aimed at the Japanese and South Korean markets. It is targeting to become one of the top hydrogen exporters globally by 2030.
- The government of Australia has granted 'major project status' to the Asian Renewable Energy Hub, which will produce green hydrogen (using a 14MW electrolyzer capacity) for exports to Asia
- Australia has partnered with Japan for establishing a fully integrated hydrogen supply chain (PROJECT X), starting with production in Australia's Victoria and transportation to Kobe, Japan. The world's first liquid hydrogen carrier has been deployed as part of the supply chain.

A dedicated fund

exists for

hydrogen

projects.

All Au

states

are pu

hydro strate

		framed by states such as Queensland, South and Western Australia, and Tasmania
ustralian		These states are bringing forth their specific advantages in the hydrogen value chain and are pursuing opportunities in both the domestic and international markets.
s ursuing their ogen egies.	•	For instance, the state of South Australia that derives arou 50% of its energy needs from renewable sources is inviting investment in green hydrogen production for exports.
		The Victorian state government is partnering with Japanes government for the PROJECT X that will be used for supplying hydrogen to Japan
		A hydrogen fund
		Australia has established the ~GBP167 million Advancing

Regional strategies for faster growth

- Australia has established the ~GBP167 million Advancing Hydrogen Fund, which is one of the largest national funds globally dedicated to hydrogen
- The fund will be provide concessional finance for projects that boost Australia's hydrogen production, develop export and domestic supply chains, establish hubs and build domestic demand
- In addition, the government has provided another ~GBP39 million to seven projects under the 'Renewable Hydrogen Deployment Funding Round'

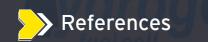
Japan's Hydrogen Strategy - Key differentiators

Ø	Strong focus on mobility applications	90	Point-to-point supply chains development plans
Japan has set aggressive targets for FCEVs to further consolidate its leadership position globally.	 Japan is aiming for 200,000 FCEV units by 2025 and 800,000 units by 2030. Technology developments, public-private coordination and regulatory frameworks have been planned to make FCEVs affordable and competitive. Through these initiatives, the government plans to bring down the cost of FCEVs to the level of hybrid electric vehicles (HEVs) by 2025 In addition, FCEVs for personal use are subsidized and eligible for tax breaks 320 hydrogen refueling stations will also be set up by 2025. Capex and opex reduction of filling stations through technology development and efficiency enhancement is being pursued. At present, construction of hydrogen refueling stations are subsidized To reduce the construction and operating costs of hydrogen filling stations, revisions have been made to several items in the Regulatory Reform implementation Plan Specific cost targets for components of a filling station have been set for 2025 by the government 	Japan is creating hydrogen supply chains across parts of the globe.	 Japan has stated an intent to import substantial quantities of hydrogen from abroad to supplement domestic production Pilot projects are being run on international supply chain developments with other countries Recently, Saudi Arabia has transported blue hydrogen in the form of ammonia to Japan A project (mentioned under Australia) to extract hydrogen from brown coal in Australia, liquefying it and transporting that to Japan is underway In another project with Brunei, hydrogen is being extracted using the organic hydride method from unused gas for transport to Japan

(40)

Accelerating Green Hydrogen Economy

	Green Hydrogen production projects			
Hydrogen production or Electrolyzer capacity	Type of Project	Project Promoter (Public / Private)	Date of announcement	Project Location
	Partnership for Green Hydrogen Production	Private	Mar-21	PAN India
	Partnership for Green Hydrogen Production	Private	Mar-21	Tamil Nadu
500 kW - 1000 kW	Green Hydrogen Production	Public	Jun-21	Uttar Pradesh
	Partnership for Green Hydrogen Production	Private	Jul-21	PAN India
50kW, 0.13 TPD	Green Hydrogen Production	Public	Jul-21	Andhra Pradesh
1.25 MW solar plant for green electricity generation source	Green Hydrogen Production	Public	Jul-21	Ladakh
	Pilot Green Hydrogen Plant	Public	Aug-21	PAN India
Manufacturing capacity: 500 MW/year; can be scaled to 2GW/year	Electrolyzer Manufacturing	Private	Aug-21	Karnataka
25 kW	Green Hydrogen Production	Public	Aug-21	Ladakh
2.5 GW Electrolyzer Manufacturing plant	Electrolyzer Manufacturing	Private	Sep-21	Gujarat
	Partnership for Green Hydrogen Production	Private	Sep-21	PAN India
	Green Hydrogen Production	Private	Oct-21	PAN India
4.3 Ton per day (TPD) Hydrogen production	Tender for Green Hydrogen Production	Public	Oct-21	Madhya Pradesh
2 MW Solar plant to be used for electricity production for electrolyzer	Green Hydrogen Production	Private	Oct-21	Gujarat
5 MW PEM Electrolyzer project- 2TPD Hydrogen production plug power make	Green Hydrogen Production	Public	Oct-21	Madhya Pradesh
	Partnership for Electrolyzer Manufacturing	Private	Oct-21	
100 MW in the first phase + a 25 kW self-developed Fuel cell pilot project	Tender for Green Hydrogen Production	Public	Nov-21	PAN India
20 MW electrolyzer	Tender for Green Hydrogen Production	Public	Nov-21	Madhya Pradesh
200MW - 2GW	Tender for Green Hydrogen Production	Public	Nov-21	PAN India


(42)

Green Hydrogen production projects				
Project Location	Date of announcement	Project Promoter (Public / Private)	Type of Project	Hydrogen production or Electrolyzer capacity
Uttar Pradesh and Haryana	Nov-21	Public	Tender for Green Hydrogen Production	40 MW/5000MT per annum (Uttar Pradesh) and 15 MW/2000 MT per annum (Haryana)
Madhya Pradesh	Nov-21	Private	Green Hydrogen Production	50 kiloton per annum
PAN India	Dec-21	Private	Partnership for Green Hydrogen Production	
PAN India	Dec-21	Public	Partnership for Green Hydrogen Production	
PAN India	Dec-21	Private	Partnership for Green Hydrogen Production	>2 GW
PAN India	Dec-21	Public	Partnership for Green Hydrogen Production	
Maharashtra	Jan-22	Private	Electrolyzer Manufacturing	1 GW
PAN India, Europe and UK	Jan-22	Private	Partnership for Green Hydrogen Production	1 GW
PAN India	Feb-22	Private	Partnership for Green Hydrogen Production	
PAN India	Apr-22	PPP	Partnership for Green Hydrogen Production	

(43)

- 1. IEA, Indian Energy Outlook 2021, <u>https://www.iea.org/reports/india-energy-outlook-2021</u>
- 2. Status Quo Mapping of Hydrogen Production and Consumption in India, Indo-German Energy Forum, 2021
- 3. Aziz, M. Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies 2021, 14, 5917. https://doi.org/10.3390/en14185917
- 4. <u>https://pib.gov.in/PressReleasePage.aspx?PRID=1799067</u>
- 5. Hydrogen tools, <u>https://h2tools.org/hyarc</u>
- 6. Hall, W., Spencer, T., Renjith, G., and Dayal, S. 2020. The Potential Role of Hydrogen in India: A pathway for scaling-up low carbon hydrogen across the economy. New Delhi: The Energy and Resources Institute (TERI)
- 7. Biswas, Tirtha, Deepak Yadav and Ashish Guhan.2020. A Green Hydrogen Economy for India: Policy and Technology Imperatives to Lower Production Cost. New Delhi: Council on Energy, Environment and Water
- 8. Energy map of India, <u>https://vedas.sac.gov.in/energymap/</u>
- Ministry of Power (Gol),2022 <u>https://powermin.gov.in/sites/default/files/Green_Hydrogen_Policy.p</u> <u>df</u>
- 10. Ministry of Coal (Gol), <u>https://coal.gov.in/en/major-statistics/coal-grades</u>

- 11. Indraprastha gas limited; National coal index, 2021 <u>https://iglonline.net/english/Default.aspx?option=article&type=single</u> <u>&id=40&mnuid=103&prvtyp=site</u>
- 12. Compiled by Mr. Vivek Jha, Indo-German Energy Forum 2021
- 13. CEA, Installed capacity report, 2022 <u>https://cea.nic.in/wp-content/uploads/installed/2022/02/installed_capacity.pdf</u>
- 14. IEA, Global Hydrogen Review, 2021
- 15. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, Future cost and performance of water electrolysis, 2017, https://doi.org/10.1016/j.ijhydene.2017.10.045.
- 16. CEEW, Catalysing Green Hydrogen Growth in India, 2021, https://cef.ceew.in/masterclass/analysis/catalysing-green-hydrogengrowth-in-india
- 17. DST 2020
- 18. National hydrogen strategies of Germany
- 19. Norway national hydrogen strategy
- 20. Japan national hydrogen strategy
- 21. Australia national hydrogen strategy

Accelerating Green Hydrogen Economy

Our Offices

Ahmedabad

22nd Floor, B Wing, Privilon Ambli BRT Road, Behind Iskcon Temple, Off SG Highway Ahmedabad - 380 059 Tel: + 91 79 6608 3800

Bengaluru

12th & 13th floor "UB City", Canberra Block No. 24, Vittal Mallya Road Bengaluru - 560 001 Tel: + 91 80 6727 5000

Ground Floor, 'A' wing Divyasree Chambers # 11, Langford Gardens Bengaluru - 560 025 Tel: + 91 80 6727 5000

Chandigarh

Elante offices, Unit No. B-613 & 614 6th Floor, Plot No- 178-178A Industrial & Business Park, Phase-I Chandigarh - 160 002 Tel: + 91 172 6717800

Chennai

Tidel Park, 6th & 7th Floor A Block, No.4, Rajiv Gandhi Salai Taramani, Chennai - 600 113 Tel: + 91 44 6654 8100 Delhi NCR Golf View Corporate Tower B Sector 42, Sector Road Gurugram - 122 002 Tel: + 91 124 443 4000

3rd & 6th Floor, Worldmark-1 IGI Airport Hospitality District Aerocity, New Delhi - 110 037 Tel: + 91 11 4731 8000

4th & 5th Floor, Plot No 2B Tower 2, Sector 126 Gautam Budh Nagar, U.P. Noida - 201 304 Tel: + 91 120 671 7000

Hyderabad

THE SKYVIEW 10 18th Floor, "SOUTH LOBBY" Survey No 83/1, Raidurgam Hyderabad - 500 032 Tel: + 91 40 6736 2000

Jamshedpur

1st Floor, Shantiniketan Building, Holding No. 1, SB Shop Area, Bistupur Jamshedpur - 831 001 Tel: +91 657 663 1000

Kochi

9th Floor, ABAD Nucleus NH-49, Maradu PO Kochi - 682 304 Tel: + 91 484 433 4000

Kolkata

22 Camac Street 3rd Floor, Block 'C' Kolkata - 700 016 Tel: + 91 33 6615 3400

Mumbai

14th Floor, The Ruby 29 Senapati Bapat Marg Dadar (W), Mumbai - 400 028 Tel: + 91 22 6192 0000

5th Floor, Block B-2 Nirlon Knowledge Park Off. Western Express Highway Goregaon (E) Mumbai - 400 063 Tel: + 91 22 6192 0000

Pune

C-401, 4th floor Panchshil Tech Park, Yerwada (Near Don Bosco School) Pune - 411 006 Tel: + 91 20 4912 6000 Ernst & Young LLP

EY | Building a better working world

EY exists to build a better working world, helping to create long-term value for clients, people and society and build trust in the capital markets.

Enabled by data and technology, diverse EY teams in over 150 countries provide trust through assurance and help clients grow, transform and operate.

Working across assurance, consulting, law, strategy, tax and transactions, EY teams ask better questions to find new answers for the complex issues facing our world today.

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients. Information about how EY collects and uses personal data and a description of the rights individuals have under data protection legislation are available via ey.com/privacy. EYG member firms do not practice law where prohibited by local laws. For more information about our organization, please visit ey.com.

Ernst & Young LLP is one of the Indian client serving member firms of EYGM Limited. For more information about our organization, please visit www.ey.com/en_in.

Ernst & Young LLP is a Limited Liability Partnership, registered under the Limited Liability Partnership Act, 2008 in India, having its registered office at 22 Camac Street, 3rd Floor, Block C, Kolkata - 700016

© 2022 Ernst & Young LLP. Published in India. All Rights Reserved.

EYINX2206-015 ED None

This publication contains information in summary form and is therefore intended for general guidance only. It is not intended to be a substitute for detailed research or the exercise of professional judgment. Neither EYGM Limited nor any other member of the global Ernst & Young organization can accept any responsibility for loss occasioned to any person acting or refraining from action as a result of any material in this publication. On any specific matter, reference should be made to the appropriate advisor.

JN

ey.com/en_in

About SED Fund

The SED Fund was set up in 2018 to deliver an ecosystem of actions mapped to nine of the United Nations' Sustainable Development Goals by raising ambitions through philanthropic support. The breath of the SDGs to which our work is linked highlights the systemic nature of the approach needed to support economic development according to our vision of sustainability, equity, and diversity.

The SED Fund catalyses resources and leadership for an equitable energy transition and climate action, by raising the ambitions of civil society through philanthropic support. We use a venture philanthropy model that provides seed funding to early-stage organisations or programmes and continues to support them in their growth and scale-up journey. The SED team uses its extensive networks to identify bold ideas with unique models and enables them to be effective towards climate action. We provide timely, reliable, and relevant data, sharing learning on the issues and solutions, working towards effective implementation at a local, national, regional, and sectoral level and funding work aligned with our mission. We apply a strategic focus, and an independent, analytical, and fact-based approach in codeveloping strategy with partners and stakeholders.

Since many of the grantees are new organisations, the SED team directly invests time and effort in mentoring and capacity building. Organisation development support is also provided in areas such as strategy, fundraising, systems, and processes.

We believe an innovative and multi-partner approach, operating at the required scale and pace is imperative to address the scale of the challenge. We also seek to remain nimble and adapt in real time to the context, needs and opportunities that arise.

Address: Fluwelen Burgwal 58, 2511CJ 's-Gravenhage, Netherlands

Website: www.stichtingsed.org

Contact Us: info@stichtingsed.org