

Although steel and aluminum remain the most used materials across key industries due to superior price performance ratio, new materials are emerging

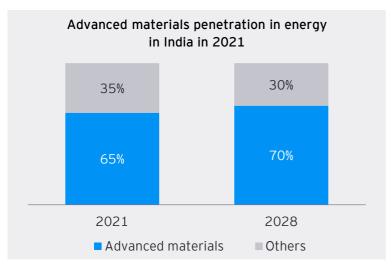
Steel and aluminum are being replaced globally by new-age and lightweight materials, such as composites, ceramics, advanced aluminum alloys, and performance alloys. Better performance efficiency and changing customer requirements are driving the use of these materials.

Source: Copyright JEC Group: JEC Observer- February 2022 and EY- Research and Analysis

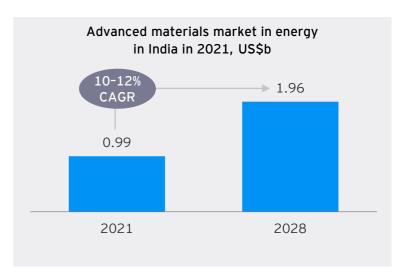
India is not far behind, with applications such as wind energy, aerospace and defense, and medical implants nearly on par with global penetration. Significant investment in end-use industries, such as energy, automotive, and aerospace and defense is driving innovation and, as a result, demand for new age materials in India.

Source: Copyright JEC Group: JEC Observer- February 2022 and EY- Research and Analysis

¹ A&T - Automotive and Transportation; A&D - Aerospace and defense; Al - Aluminium


² Performance alloys include nickel alloys, titanium alloys etc.

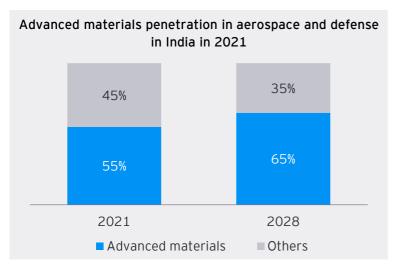
Other materials includes lithium, silicon, engineering plastics, glass, wood, etc. Materials with less than 5% share in the overall segment has been clubbed into other materials



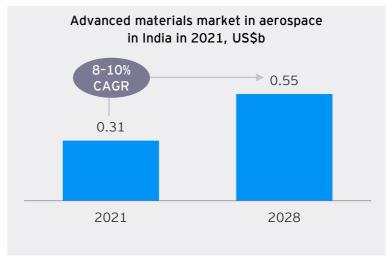
Energy sector has taken a lead in this material shift, with growth in renewable energy driving usage of composites and silicon

Rising demand for clean energy is driving capacity expansions in India for wind and solar. Longer wind blade sizes are driving up demand for glass and carbon composites. With solar establishing itself as a low-cost energy source, the demand for silicon panels may rise.

Source: Green energy holding, EY- Research and Analysis


Industry trend	Impact of industry trend	Material shift	Applications
Decarbonization	Shift to clean energy sources such as renewables	Glass compositesCarbon composites	Wind turbinesWind bladedNacelles
Decentralization	 Power generated locally through distributed resources such as rooftop solar panels 	► Silicon	Photovoltaic cellsBatteriesSmart grids
Energy storage	 Growing demand for energy storage solutions, such as batteries to help balance supply and demand 	LithiumNickel	ElectrodeElectrolyte

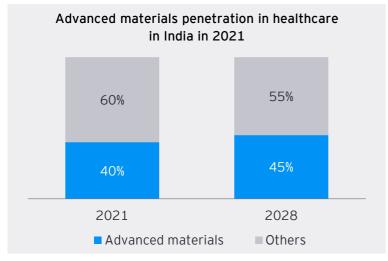
 $Source: Startus\ insights,\ BHP,\ Carbon\ trust,\ EY\mbox{-}\ Research\ and\ Analysis$



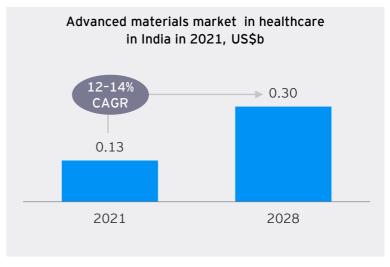
In the aerospace and defense sector, drones and hypersonic aircraft are driving use of high-performance alloys and piezoelectric materials

This industry has long used advanced materials, such as performance alloys and composites, but adoption is increasing due to increased demands for hypersonic capabilities and light weighting. With drones becoming an integral part of global defense strategies, the demand for smart materials is increasing.

Source: CMR DRHP, Midhani RHP, MOCI- Export Import Data Bank, EY- Research and Analysis


Industry trend	Impact of industry trend	Material shift	Applications
Light weighting and net zero aircrafts	 Changed designs for weight reduction and better fuel efficiency 	Carbon composites	PanelsTail parts
Hypersonic weapons and aircrafts	 Use of materials that can withstand extreme temperature and high speed 	Super alloysTitanium alloys	Engine componentsStructural components
Autonomous aircrafts and drones	 Rising demand of electronic components and smart materials 	Shape memory alloysPiezoelectric materials (PVDF)	Active control componentsElectronic sensors

Source: Ansys, Prescouter, ICAO, BBVA, EY- Research and Analysis



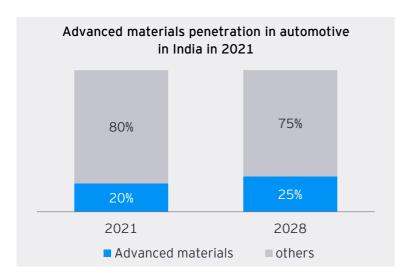
Healthcare, which is witnessing a breakthrough in implants and prosthetics, is increasing their use of ceramics and nanomaterials

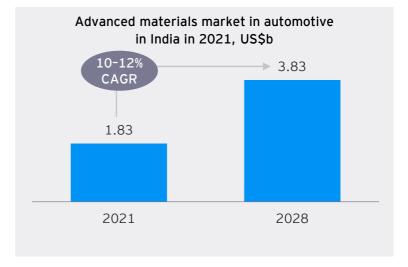
Biocompatibility requirements are expected to drive the demand for titanium and biomaterials. There has also been a rise in consumer preference for ceramic implants such as aluminum dioxide, zirconia, and calcium phosphate, which account for a sizable share of this market.

*Healthcare penetration based on medical implants market Source: Emerginnova, NS Medical devices, EY- Research and Analysis

Source: Ministry of Textiles -India, RIS, Midhani- RHP, EY- Research and Analysis

Industry trend	Impact of industry trend	Material shift	Applications
3D printing and bionic limbs	 Increased customization for patients need with higher speed efficiency 	ABSUltemBiomaterialsTitanium	Prosthetic limbReplacement tissue
Smart prosthetics	 Higher case of connected technology with biocompatible materials 	TitaniumCeramicsSilicon	Implantable sensorsSpinal screws
Nanotechnology	Impetus on R&D in the material space to create devices which are more biocompatible and functional	 Carbon nanotubes Silica nanoparticles NHA¹ 	 Prosthetic limbs Implants and scaffolds Biosensors


Source: Ansys, Prescouter, ICAO, BBVA, EY- Research and Analysis

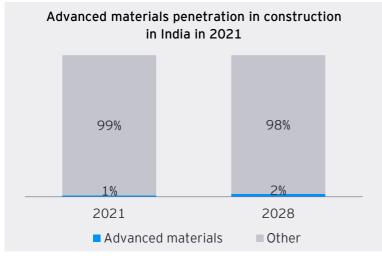

¹ NHA: Nano-hydroxyapatite

Automotive segment driven by light-weighting and electric vehicles is increasing its use of thermosets and thermoplastics

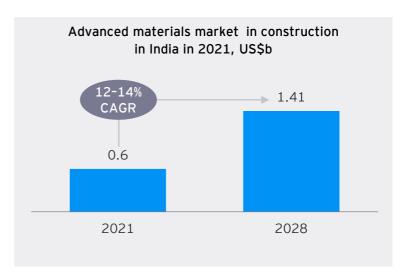
The automotive industry is also seeing a surge in demand for advanced materials due to the need for light weighting to meet higher fuel efficiency norms and extending battery range. Glass and carbon composites along with aluminum alloys are witnessing increasing demand for automotive component and body manufacturing.

*A&T penetration based on automotive segment Source: Copyright JEC Group: JEC Observer- February 2022, EY- Research and Analysis

Source: CMR DRHP, ICERP India, EY- Research and Analysis


Industry trend	Impact of industry trend	Material shift	Applications
Light weighting and fuel efficiency increase	 Lighter materials being preferred over traditional materials like steel 	 Engineering plastics (ABS,PBT) Thermosets (Glass and carbon composites) 	Body panelsCNG cylinders
Decarbonization and electrification	 Rising demand for batteries for BEV and cylinders for FCEV 	Thermosets (Glass and carbon composite)Lithium	EV BatteriesBattery casingBody panelsHydrogen cylinders
Autonomous vehicles and connected mobility	Increasing use of electronic components such as sensors	SiliconNickel	Temperature and pressure sensorsMagnetic and speed sensors

Source: Startus insights, Financial express, Autotrends. EY- Research and Analysis



Lastly, within the building and construction sector, composites are emerging as strong alternatives driven by sustainability and smart cities

Because of its large end use market and low penetration, the building and construction sector has one of the highest potentials for advanced materials. With the rise of modular construction, a greater emphasis on sustainability, and a government emphasis on quality standards, green and lightweight substitute materials will triumph in the long run.

Source: ICERP India, EY- Research and Analysis

Industry trend	Impact of industry trend	Material shift	Applications
Prefabrication and modular construction	Rising demand for lightweight materials	Wood compositesGlass composites	WallsStructural componentsFacades
Sustainability and green building	Use of materials which have lower carbon emissions	Green concreteGlass composites	RebarsStructural componentsWindow panels
Smart building and smart cities	 Construction designs that promote compactness, connectivity benefits, varied environments 	Glass compositesCarbon composites	Metro tunnelsSwimming poolsStructural strengthening

Source: Construct connect, Startus insights, Revolutionized, EY- Research and Analysis

Manufacturers in India have closely monitored material trends to ensure they do not miss out on new opportunities, have sustainable revenue growth and protect margins

Materials used in product manufacturing have a direct impact on manufacturers' revenue and margins across industries. Aligning to customer preferences, such as improved performance and lighter weight, will assist manufacturers in creating product differentiation, which will not only drive market share but also give them pricing power.

Examples of companies / government authorities adopting advanced materials across some key sectors

Industry	Company/ government authorities	Material	Use case
- 🙀 - Energy	Suzlon Wind	Glass and carbon fiber composites	Introducing advanced materials such as carbon fiber in the next- generation turbines to make blades stronger and lighter
	TPI Composites	Glass and carbon fiber composites	Manufacturing wind blades with glass, carbon and other advanced composites for optimized performance to meet customer preferences
Aerospace	Hindustan Aeronautics Limited	Carbon fiber composites	 Aerospace composite division manufactures composite parts and composite structural assemblies
	Tata Advance System	Carbon fiber composites and super alloys	 Advanced composite floor beams, tail cone, wing spars, ailerons, control surfaces and panels Complex parts on aero-engines; Components such as high pressure turbines, compressor casings and compressor extension case
Medical	Pivot implants	Titanium implants	Using titanium alloys for dental usage in Prosthetic Solutions, Dental implants, etc.
	Ceramet (Tata Steel)	Advanced ceramics	 Producing Hydroxyapatite – a calcium phosphate-based ceramic, which can be used as a bone replacement
	Mahindra and Mahindra	Glass fiber composites	 Uses thermoplastic composites for components such as tailgates and boot lids for passenger vehicles
Automotive	Tata Motors	Reinforced plastics and composites	 Uses thermoset composites for tempo, LCV, tractor components such as front panel, bumpers, fender among others
Construction	DMRC	Glass composites	 Glass FRP Rebar (for Soft Eye and Structural Reinforcements) under Delhi Metro Rail Projects
	NHAI	Glass composites	Usage of Glass FRP rebars for flatworks of roads in national highway projects ¹

Sustainability issues with traditional materials present manufacturers with an opportunity to innovate and disrupt markets. This will also assist them protect margins in a post-COVID-19 world of disrupted supply chains and re-aligned government priorities.

¹ Ministry of Road Transport & Highways issued circular on 'Value Engineering Practices for the Design, construction & Maintenance of National Highways Projects' for 'Use of Glass/ Carbon/ Aramid Fiber Reinforced Polymer Rebar for non-load bearing structures (like Crash barrier, Drain and minor CD structures like Hume pipe culvert and box culvert)'

Ernst & Young LLP

EY | Building a better working world

EY exists to build a better working world, helping to create long-term value for clients, people and society and build trust in the capital markets.

Enabled by data and technology, diverse EY teams in over 150 countries provide trust through assurance and help clients grow, transform and

Working across assurance, consulting, law, strategy, tax and transactions, EY teams ask better questions to find new answers for the complex issues facing our world today.

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients. Information about how EY collects and uses personal data and a description of the rights individuals have under data protection legislation are available via ey.com/privacy. EYG member firms do not practice law where prohibited by local laws. For more information about our organization, please visit ey.com.

About EY-Parthenon

EY-Parthenon teams work with clients to navigate complexity by helping them to reimagine their eco-systems, reshape their portfolios and reinvent themselves for a better future. With global connectivity and scale, Ex Parthenon teams focus on Strategy Realized – helping CEOs design and deliver strategies to better manage challenges while maximizing opportunities as they look to transform their businesses. From idea to implementation, EY-Parthenon teams help organizations to build a better working world by fostering long-term value. EY-Parthenon is a brand under which a number of EY member firms across the globe provide strategy consulting services. For more information, please visit ey.com/parthenon.

Ernst & Young LLP is one of the Indian client serving member firms of EYGM Limited. For more information about our organization, please visit www.ey.com/en_in.

Ernst & Young LLP is a Limited Liability Partnership, registered under the Limited Liability Partnership Act, 2008 in India, having its registered office at 9th Floor, Golf View Corporate Tower B, Sector 42, Golf Course Road, Gurgaon Haryana 122002

© 2023 Ernst & Young LLP. Published in India. All Rights Reserved.

ED None EYIN2303-006

This publication contains information in summary form and is therefore intended for general guidance only. It is not intended to be a substitute for detailed research or the exercise of professional judgment. Neither EYGM Limited nor any other member of the global Ernst & Young organization can accept any responsibility for loss occasioned to any person acting or refraining from action as a result of any material in this publication. On any specific matter, reference should be made to the appropriate advisor.

Contacts

Sailesh Rao Partner, Strategy EY LLP sailesh.rao@parthenon.ey.com

Ishank Kataria Director, Strategy **EY LLP** ishank.kataria@parthenon.ey.com

Kamal Suri Associate Director, Strategy and Transactions Research kamal.suri@in.ey.com

Aditi Lad Senior Associate Strategy and Transactions Research **EY LLP** aditi.lad@in.ey.com

Aman Gupta Associate, Strategy **EY LLP** aman11.gupta@parthenon.ey.com

