
Test Design
Optimisation

Interactive content – best viewed in Full-Screen mode

EY Test Design Optimisation

01

THE BENEFITS OF IMPLEMENTING TEST DESIGN OPTIMISATION ARE:

01 0702 03 04 05 06
Significant (up to
50%) cost reduction
for testing

Enables full re-use
of tests along the
entire testing life
cycle

Increased number
of defects found
earlier in the lifecycle

Targeted test
coverage with clear
visual representation
for both business
and technical teams

Automatic design of
high-quality ‘multiple
strike’ test cases

Optimisation of test
case volumes

Re-focus Regression
Testing and Test
Automation to be
risk-driven

The process of quality assurance and testing consists of test cases that are based upon requirements or user stories. To achieve the required level of coverage a certain
number of tests must be executed, but these test suites typically contain redundancy. Traditional approaches to testing have proven to be inefficient, time-wasting
and extends deployment timelines. Where quality at speed is a key driver behind digital transformation, this is unacceptable. It isn’t a secret that due to resource
and time constraints, test creation and execution are usually squeezed, resulting in the validity of test coverage to become questionable.

Test Design Optimisation

Traditional approaches add further risk to projects where defects are found in production. The impact of a severe production defect can be catastrophic. How should
organisations change the approach? What are the practical solutions to address these challenges? EY recommend Test Design Optimisation through pairwise techniques.

Pairwise is used to achieve the desired result in the most efficient way possible. When given a set of input parameters, the algorithm derives a minimum number of
scenarios with all discrete value pairs to be tested at least once. When testing a complex application, there can be an enormous number of possible tests that could
potentially be executed. There is usually no clear mathematical basis to identify the test coverage and no visual analysis of all the possible tests in one single location,
mostly because documentation is either not updated with the latest requirements or is scattered across systems. With information scattered across multiple sources,
there is a repeated effort to test the same or a similar test scenario. This creates the wastage and redundancy in the testing lifecycle. Pairwise tools not only provide
optimized data combinations but also have an analysis capability that visually shows the pairs and coverage percentage and allows you to adjust to view the impact.

The increasing demand for speed to market puts more pressure on testing to be able to handle changes and new requirements faster. This demand presents other challenges
as well; with reduced timelines the ability to test everything in a shorter timescale becomes a real issue. Additionally, to protect quality and reduce risk the right level of
depth and test coverage for the highest-risk areas is vitally important. This feeds the test automation selection and therefore needs to have high focus.

Traditional approaches are very time-consuming and have limited ability to optimize. Implementing Test Design Optimization through a purpose-built tool will reduce
the time required to define all the combinations and generate the test cases.

02
Pairwise is a recognised testing technique that has been around for several years. Digital transformation and the demand to increase speed to market has driven
a refocus on tools and automation to perform testing faster while not compromising quality. Historically, pairwise tools were only used on stable systems; however,
applying them as part of the ‘shift-left’ approach while building the system has shown it can considerably reduce the cost, time and effort for testing. The industry
defines pairwise testing (also known as all-pairs testing) to be a combinatorial method of software testing that, for each pair of input parameters to a system (typically,
a software algorithm), tests all possible discrete combinations of those parameters. Using carefully chosen test vectors, this can be done much faster than an
exhaustive search of all combinations of all parameters, by ‘parallelizing’ the tests of parameter pairs.

Pairwise-based testing

EY Test Design Optimisation

03
Without specific tools, it can be extremely challenging for testers and managers to determine how much testing is enough. A pairwise test tool enables the creation
of the optimal mix of scenarios and guides teams to define and schedule risk-based testing. Pairwise tools provide modelling capabilities that are easy to undesstand
and simple to use. Furthermore, it is easy to maintain test cases by adding new features or eliminate those not needed.

Pairwise is used to achieve the desired result in the most efficient way possible. When given a set of input parameters, the algorithm derives a minimum number of
scenarios with all discrete value pairs to be tested at least once. When testing a complex application, there can be an enormous number of possible tests that could
potentially be executed. There is usually no clear mathematical basis to identify the test coverage and no visual analysis of all the possible tests in one single location,
mostly because documentation is either not updated with the latest requirements or is scattered across systems. With information scattered across multiple sources,
there is a repeated effort to test the same or a similar test scenario. This creates the wastage and redundancy in the testing lifecycle. Pairwise tools not only provide
optimized data combinations but also have an analysis capability that visually shows the pairs and coverage percentage and allows you to adjust to view the impact.

The Pairwise Tool

WHEN TO APPLY PAIRWISE TESTING

Projects with a significant
testing effort, where test
design efficiencies and
coverage improvements
will have the most impact

First-release projects or
projects in the early stages
of test creation; this will allow
for earlier defect detection
and for test efficiencies to be
realized over a longer period
of time

Projects that require multiple
data combination to be tested,
resulting in a large number
of test cases

Web-based applications with
significant decision-making
processes

Part of a Test Automation
Transformation initiative
where the entire test process
that enables automation
is optimised by selecting
automation candidates
through a pairwise driven
approach

EY Test Design Optimisation

04
Pairwise can be used with the two leading design approaches:
• Model-based testing concept that records requirements and then aids in designing test scenarios and test cases
• Data parameter and value-driven

The tools identified in this paper serve as examples for the use of pairwise with these differing approaches.

Pairwise-based testing

WHEN TO APPLY PAIRWISE TESTING

Process model tools typically feature add-ons that allow the recording of out-of-the-box scripts with a User-Interface recorder tool (e.g. Selenium) and then import
them to generate initial process models. Model-based tools are most effective when deployed at the beginning of the project, when requirements are being formed.

Data parameter and values tools are best applied when test scenarios are existing and the parameters needed to test with are defined by rules or code logic.

Following the input of process models or parameters and values the next step is to create any constraints and specific requirements if required. The tool then will
automatically generate the test cases after which the tester can update any test cases and then adjust the degree of coverage. Coverage metrics provide a graphical
view of the test case coverage level for the test cases selected.

An example use case for pairwise testing is ‘Know your Customer (KYC)’. KYC requires a list of questions to be asked to verify whether a customer is eligible for
banking products. Based upon answers provided, questions render additional questions and therefore can take multiple paths. Pairwise is an excellent technique to
validate that all questions are tested. It takes those questions as parameters and the answers as values; constraints will be entered, then the tool will generate a set
of test cases that will test the minimum coverage of all paths of parameters and values.

A PAIRWISE EXAMPLE

EY Test Design Optimisation

05
TEST DESIGN TOOLS

EY Test Design Optimisation

06
Where quality at speed and system resilience are critical to digital transformation the quality assurance and testing process must be optimised to enable this. Test Design
Optimisation in the form of pairwise is not industry-specific and therefore can be used across multiple industries and applications. Successfully implementing techniques
and tools for pairwise have proven to reduce cost, time and effort across the entire testing lifecycle. Defect to test case ratios are dramatically lower when using pairwise.
Implementing pairwise as part of a ‘shift-left’ testing approach leads to a reduction in cost of defects. Implementing a risk-based strategy underpinned by pairwise not
only leads to accelerated delivery but also establishes a risk-based focused to ongoing systems regression testing. Converging this approach with Test Automation
Transformation will position organisations testing process ready for the predicted increase of digital transformation initiatives.

Summary

WHEN TO APPLY PAIRWISE TESTING

If you would like to find out more or arrange a demo, please contact:

Matthew Steer
Associate Partner
CESA Advisory | Technology | Strategic Testing Services
Matthew.Steer@pl.ey.com
+48 660 440 119

EY Test Design Optimisation

Daniel Wilenski
Senior Consultant
CESA Advisory | Technology | Strategic Testing Services
Daniel.Wilenski@pl.ey.com
+48 789 407 567

EY | Assurance | Tax | Transactions | Advisory

About EY
EY is a global leader in assurance, tax, transaction and advisory services. The
insights and quality services we deliver help build trust and confidence in the
capital markets and in economies the world over. We develop outstanding leaders
who team to deliver on our promises to all of our stakeholders. In so doing, we
play a critical role in building a better working world for our people, for our clients
and for our communities.

EY refers to the global organization and/or one or more of the member firms
of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst
& Young Global Limited, a UK company limited by guarantee, does not provide
services to clients. Information about how EY collects and uses personal data and
a description of the rights individuals have under data protection legislation are
available via ey.com/pl/pl/home/privacy.

For more information about our organization, please visit ey.com.

© 2020 EYGM Limited.
All Rights Reserved.

This material has been prepared for general informational purposes only and is not intended to be relied
upon as accounting, tax, or other professional advice. Please refer to your advisors for specific advice.

The tool used in this example is a model-based pairwise tool. The models
can be built manually by dragging and dropping symbols based on business
process flows, or they can be uploaded from an existing process flow tool.
This tool has an add-on that works with Selenium that will allow you to
record application steps that can be imported to create the process models.
Each of the symbols represents a different step at which constraints, values
and specific requirements can be applied.

The next step is to generate the test cases. Select the type of optimization
you want to perform and then generate the test cases. All paths and the
number of nodes will appear for selection and review. Save the paths
generated and then the test coverage for each path can be visualised
and confirmed.

MODEL-BASED TEST DESIGN TOOL

Test Design Tools (1/4)

EY Test Design Optimisation

Input Constraints

This example uses a tools to enable pairwise testing. The test planner creates
a new plan or can select to update an existing plan. Once in the plan, the
Input tab allows the test planner to enter parameters and values required for
testing. Parameters and values are the indicators that change from test case
to test case. Values are the different selections for a parameter. The more
parameters entered for a test plan, the less effective the tool becomes and
therefore systemic planning and creation of multiple plan modules should be
considered.

After parameters have been entered the next step is to enter any constraints
against those parameters. Constraints are rules that define how the
parameters and their values should work with other parameters and values.
For example, a parameter and one of its values may only be allowed when
another parameter and its value are met (invalid pairs, married pairs). If/
then statements also help in defining constraints. Constraints can be
1:Many or Many:1.

DATA PARAMETER-DRIVEN TEST DESIGN TOOL

Test Design Tools (2/4)

EY Test Design Optimisation

Requirements Test Cases

Requirements can be imported from several formats, such as Word or Excel.
When using Excel, data inputs will need to be in the format of Name, Description
and Expected Outcome. After importing requirements, specific combinations
or test conditions/test inputs can be added. Traceability is enabled from
requirements to parameters. The Requirements tab allows the test planner
to manually input a set married pair, constraints or a set of multiple combinations
of data in case not automatically created by the tool. Negative tests are
also created and can be manually inputted to cover error handling cases.

The test cases are generated. The default setting for test cases is two-way
interaction, but can be configured to select up to a five-way interaction or
mixed-strength interaction. Increasing the number of interactions increases
coverage and reduces risk. However, as you increase the number of interactions,
the number of test cases increases and, in return, time and effort increase.
Risk is the driving factor behind the test coverage at this point and should
be agreed by business and technical stakeholders.

DATA PARAMETER-DRIVEN TEST DESIGN TOOL

Test Design Tools (3/4)

EY Test Design Optimisation

Analysis

The Analysis tab illustrates the test coverage in different formats
such as Plan Scorecard, Coverage Graph and Matrix Chart. These
can be used to determine how much test coverage has occurred
at any time and how you can maximize investment on return. The
Coverage Graph shows that as you increase the number of tests,
the percentage of coverage starts to reach a point that creates
a negative return. The Matrix Chart shows what is being covered
based on the number of tests you select to perform. The Plan
Scorecard lists the features used and shows what is tested. The
Analysis tab demonstrates empirically that a scope coverage of
approx. 80% can usually be obtained by executing less than half of
the tests. The Matrix Chart also provides a road map to constructing
negative tests, as it illustrates what should not be occurring within
the application under test.

Test Design Tools (4/4)

EY Test Design Optimisation

	TEST DESIGN TOOLS MAIN
	04
	03
	02
	01
	06
	test design tools content

	Button 351:
	Button 352:
	Button 5056:
	Button 5057:
	Button 5058:
	Button 5059:
	Button 5060:
	Button 5061:
	Button 335:
	Button 336:
	Button 5050:
	Button 5051:
	Button 5052:
	Button 5053:
	Button 5054:
	Button 5055:
	Button 353:
	Button 354:
	Button 5044:
	Button 5045:
	Button 5046:
	Button 5047:
	Button 5048:
	Button 5049:
	Button 361:
	Button 362:
	Button 508:
	Button 509:
	Button 5040:
	Button 5041:
	Button 5042:
	Button 5043:
	Button 238:
	Button 239:
	Button 532:
	Button 502:
	Button 503:
	Button 504:
	Button 505:
	Button 506:
	Button 507:
	Button 375:
	Button 376:
	Button 5010:
	Button 5011:
	Button 5012:
	Button 5013:
	Button 5014:
	Button 5015:
	Button 222:
	Button 223:
	Button 429:
	Button 5016:
	Button 5017:
	Button 5018:
	Button 5019:
	Button 5020:
	Button 5021:
	Button 407:
	Button 408:
	Button 428:
	Button 5022:
	Button 5023:
	Button 5024:
	Button 5025:
	Button 5026:
	Button 5027:
	Button 4010:
	Button 4011:
	Button 430:
	Button 5028:
	Button 5029:
	Button 5030:
	Button 5031:
	Button 5032:
	Button 5033:
	Button 4013:
	Button 431:
	Button 5034:
	Button 5035:
	Button 5036:
	Button 5037:
	Button 5038:
	Button 5039:

